

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于自适应粒子群优化BP神经网络的高速电主轴温度预测模型(英文) Title:AHigh-SpeedElectricMainShaftTemperaturePredictionModelbasedonAdaptiveParticleSwarmOptimizationBPNeuralNetwork Abstract: Theaccuratepredictionofhigh-speedelectricmainshafttemperatureiscrucialforthesafeandreliableoperationofmachineryinvariousindustries.Inthispaper,anovelpredictionmodelbasedonahybridapproachofAdaptiveParticleSwarmOptimization(APSO)andBackPropagation(BP)NeuralNetworkisproposed.TheAPSOalgorithmisemployedtooptimizethetrainingprocessoftheBPneuralnetwork,enhancingitsconvergencespeedandaccuracy.Theproposedmodelistestedonreal-worlddatafromahigh-speedelectricmainshaftandcomparedwithtraditionalBPneuralnetworkmodels.TheexperimentalresultsdemonstratethattheproposedAPSO-BPneuralnetworkmodeloutperformsthetraditionalBPneuralnetworkmodels,achievingamoreaccurateandefficientforecastofthemainshafttemperature. 1.Introduction High-speedelectricmainshaftsarewidelyusedinvariousindustries,suchaspowerplants,factories,andtransportationsystems.Thetemperatureofthesemainshaftsisacriticalparameterthatdirectlyaffectsthesafeoperationandperformanceofthemachinery.Accuratetemperaturepredictionhelpsinmonitoringandcontrollingthemainshafttemperature,preventingequipmentfailure,andensuringoperationalefficiency.Therefore,thedevelopmentofareliableandefficientpredictionmodelformainshafttemperatureisofgreatsignificance. 2.RelatedWork Variouspredictionmodelshavebeenproposedfortemperaturepredictionindifferentfields,suchasartificialintelligence-basedmodels,statisticalmodels,andmachinelearningmodels.Amongthesemodels,BPneuralnetworkshaveshownpromisingresultsintimeseriesforecastingduetotheirabilitytocapturenon-linearrelationshipsandadapttocomplexsystems.However,thetrainingprocessofBPneuralnetworksisoftentime-consuming,andtheconvergenceratecouldbeslow. 3.Methodology Inthispaper,weproposeahybridmodelthatcombinesAPSOalgorithmandBPneuralnetworktoaddressthelimitationsoftraditionaltrainingalgorithms.TheAPSOalgorithmisavariantofthetraditionalParticleSwarmOptimization(P

快乐****蜜蜂
实名认证
内容提供者


最近下载