

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
量子信道的凸优化重建技术(英文) Title:ConvexOptimizationTechniquesforQuantumChannelReconstruction Abstract: Quantumchannelsplayavitalroleinquantuminformationprocessingandcommunication.Theabilitytoaccuratelycharacterizeandreconstructquantumchannelsisofparamountimportance.Inrecentyears,convexoptimizationtechniqueshaveemergedaspowerfultoolsforthereconstructionofquantumchannels.Thispaperprovidesanoverviewofconvexoptimization-basedreconstructiontechniquesforquantumchannelsandhighlightstheiradvantages,applications,andchallenges.Thepaperalsodiscussesseveralrelevantalgorithms,suchasmaximumlikelihoodestimation,semidefiniteprogramming,andcompressivesensing,anddiscussestheirpotentialforimprovingchannelreconstructionaccuracyandefficiency.Finally,futuredirectionsandopenproblemsinthefieldofconvexoptimization-basedquantumchannelreconstructionareoutlined. 1.Introduction Quantumchannelsaremathematicalrepresentationsofthephysicalprocessesthattransformquantumstates.Accuratelycharacterizingquantumchannelsiscrucialforvarioustasksinquantuminformationprocessing,includingquantumcommunication,quantumteleportation,quantumerrorcorrection,andquantumcomputation.Theprocessofreconstructingquantumchannelsfromexperimentaldataisknownasquantumchannelreconstruction. 2.ConvexOptimization-basedMethods Convexoptimizationtechniquesprovideapowerfulframeworkforsolvingawiderangeofmathematicaloptimizationproblems.Thesetechniquesofferadvantagessuchasglobaloptimalityguarantees,robustnessagainstnoise,andscalabilitytolarge-scaleproblems.Inthecontextofquantumchannelreconstruction,convexoptimization-basedmethodsaimtofindthechannelthatbestmatchesagivensetofexperimentalmeasurements. 2.1MaximumLikelihoodEstimation Onecommonlyusedconvexoptimizationapproachismaximumlikelihoodestimation(MLE).MLEaimstofindthequantumchannelthatmaximizesthelikelihoodofobtainingtheobservedmeasurementoutcomes.Thistechniqueisstatisticallyefficientandprovidesawell-foundedframeworkforestimatingquantumchannels.MLEcanbesolvedusingconvexoptimizationalgorithms,suc

快乐****蜜蜂
实名认证
内容提供者


最近下载