

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
频率域Bregman自适应稀疏脉冲反褶积方法(英文) FrequencyDomainBregmanAdaptiveSparsePulseDeconvolutionMethod Introduction Pulsedeconvolutionisawidelyusedtechniqueinsignalprocessingforrecoveringtheoriginalsignalfromadistortedorconvolvedsignal.Themostcommonapproachtopulsedeconvolutionisbyusingatime-domainfilter,whichcanbesensitivetonoiseandcancreateringingartifactsintherecoveredsignal.Toovercometheseissues,afrequency-domainapproachhasbeendeveloped.Oneofthemostpromisingfrequency-domaintechniquesistheBregmanAdaptiveSparsePulseDeconvolution(BASPD)method,whichhasdemonstratedgoodresultsinsparsesignalswithlownoiselevels. TheBASPDmethodisbasedontheBregmaniterationprocess,whichusesanauxiliaryvariabletofindthesparsestsolutiontoanoptimizationproblem.Theapproachisparticularlyeffectiveinsparsesignalrecovery,wherethesparsityconstraintisimposedonthesignal.ThispaperpresentstheFrequencyDomainBregmanAdaptiveSparsePulseDeconvolution(FD-BASPD)technique,whichextendstheBASPDmethodtothefrequencydomaintoimproveitsapplicabilityandaccuracyindeconvolvingsignals. Methodology ThefrequencydomainimplementationoftheBASPDmethodinvolvesthreestages.First,theFouriertransformisappliedtothesignalandtoasparsepulsefilter.TheFouriertransformisusedtoconvertthesignalandfilterfromtime-domaintofrequencydomain,whichallowstheconvolvedsignaltoberepresentedasaproductofthesignalandfilterinthefrequencydomain.Second,theresultingfrequencydomainproblemissolvedusingtheBregmaniterationprocesstofindthesparsestsolution.Anauxiliaryvariableisusedtoseparatethesignalandfilterandimposesparsityconstraints.Finally,theinverseFouriertransformisappliedtotherecoveredsignalinthefrequencydomaintoobtainthedeconvolvedsignalinthetimedomain. TheFD-BASPDmethodhasseveraladvantagesovertraditionaltime-domain-basedtechniques.Firstly,becauseitisbasedinthefrequencydomain,itislesssensitivetonoiseandabletodealwithallthefrequencycomponentsofthesignal.Secondly,becauseitusesasparsepulsefilter,itisbetteratpreservingthehigh-frequencycontentofsignals,whichistypicallylostintra

快乐****蜜蜂
实名认证
内容提供者


最近下载