

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
BP神经网络在测试系统动态补偿中的应用(英文) ApplicationofBackpropagationNeuralNetworkinTestingSystemDynamicCompensation Abstract: Withthedevelopmentofpowersystems,therequirementforaccurateandreliabletestingofsystemdynamicsbecomesincreasinglyimportant.Thispaperintroducestheapplicationofbackpropagationneuralnetwork(BPNN)intestingsystemdynamiccompensation.TheBPNNmethodhasbeenwidelyusedinvariousfieldsduetoitsabilitytoapproximatenonlinearfunctionsandlearncomplexpatterns.Inthisstudy,BPNNisutilizedtocompensateforthesystemdynamicsduringtesting,aimingtoimprovetheaccuracyandreliabilityofthetestingresults.ThepaperdiscussesthetrainingprocessandthetestingprocedureoftheBPNN,aswellaspresentsacasestudytodemonstrateitseffectivenessinsystemdynamiccompensation.TheresultsshowthattheapplicationofBPNNintestingsystemdynamiccompensationcansignificantlyimprovetheaccuracyofthetestingprocessandenhancethereliabilityofthetestingresults. 1.Introduction Powersystemsarecomplexdynamicsystemsthatrequireaccuratetestingtoensuretheirstableandreliableoperation.Systemdynamiccompensationisacrucialstepintestingpowersystems,asithelpstoeliminatetheeffectsofsystemdynamicsandensureaccuratemeasurementofthesystemresponse.Traditionalcompensationmethodsoftenrelyonmathematicalmodelsandmanualtuning,whichcanbetime-consumingandpronetoerrors.Inrecentyears,artificialintelligencetechniques,especiallyneuralnetwork-basedapproaches,haveshowngreatpotentialinsystemdynamiccompensation. 2.BackpropagationNeuralNetwork 2.1StructureandPrinciple Thebackpropagationneuralnetwork(BPNN)isamultilayerfeedforwardneuralnetworkthatconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.Itutilizesasupervisedlearningalgorithm,wherethenetworkistrainedusingalabeleddataset.TheprincipleofBPNNistoiterativelyadjusttheweightsandbiasesoftheneuronsinthenetworktominimizethedifferencebetweentheactualoutputandthedesiredoutput. 2.2TrainingProcess ThetrainingprocessofBPNNinvolvesfeedingtheinputdataforwardthroughthenetwork,calculatingtheerrorbetweenthepredictedoutputandt

快乐****蜜蜂
实名认证
内容提供者


最近下载