

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
GPS动态定位数据处理模型的比较研究(英文) ComparativeResearchonGPSDynamicPositioningDataProcessingModels Abstract: GlobalPositioningSystem(GPS)hasbecomeanessentialtechnologyforvariousapplicationssuchasnavigation,location-basedservices,andtracking.GPSdynamicpositioningdataprocessingplaysacrucialroleinextractingaccurateandreliablepositioninformationfromrawGPSmeasurements.Overtheyears,severaldataprocessingmodelshavebeendevelopedandemployedtoenhancetheaccuracyandefficiencyofGPSpositioning.ThispaperaimstoprovideacomparativeanalysisofdifferentGPSdynamicpositioningdataprocessingmodels,highlightingtheirstrengths,weaknesses,andapplicationareas. 1.Introduction: GPSdynamicpositioningdataprocessinginvolvesseveralstepssuchassignalacquisition,tracking,measurementextraction,andpositionestimation.Differentmodelshavebeenproposedandutilizedtooptimizethesestepsaccordingtospecificrequirements.Thiscomparativeresearchaimstoexploreandanalyzethesemodelstoidentifytheirkeycharacteristicsandapplications. 2.TraditionalKalmanFilteringModel: ThetraditionalKalmanfilteringmodeliswidelyusedforGPSdynamicpositioningdataprocessing.Itemploysarecursivealgorithmthatestimatesthepositionbasedonpreviousmeasurementsandcalculatestheoptimalestimatebasedonthecurrentmeasurement.Thismodelprovidesaccuratepositioningoutcomesbutmaysufferfromtheaccumulationoferrors,especiallyinscenarioswithsignalblockageormultipatheffects. 3.Extended,Unscented,andParticleFilteringModels: TotacklethelimitationsofthetraditionalKalmanfilteringmodel,severalextendedversionshavebeenproposed.TheExtendedKalmanFiltering(EKF)modelintroducesalinearizationprocesstohandlenonlinearmeasurementmodels.TheUnscentedKalmanFiltering(UKF)modelusesadeterministicsamplingtechniquetocapturethenonlinearityofthesystem.TheParticleFiltering(PF)modelemploysMonteCarlosimulationstoestimatetheposteriorprobabilitydistributionofthestates.Thesemodelsperformwellinnonlinearandnon-Gaussianscenariosbutmaysufferfromcomputationalcomplexities. 4.RecurrentNeuralNetworkModel: Withtheadvancementsin

快乐****蜜蜂
实名认证
内容提供者


最近下载