

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
112维谱估计在直升机声信号特征提取中的应用 Title:Applicationsof112-DimensionalSpectralEstimationinHelicopterSoundSignalFeatureExtraction Abstract: Helicopternoisehasbecomeasignificantenvironmentalconcernduetoitsimpactonindividuals'dailylivesandthepotentialharmitposestohumanhealth.Extractingmeaningfulfeaturesfromhelicoptersoundsignalsiscrucialforeffectivenoisecontrolandmitigationstrategies.Inrecentyears,theapplicationofmultidimensionalspectralestimationtechniques,suchasthe112-dimensionalspectralestimationmethod,hasshownpromisingresultsinaccuratelycharacterizinghelicopternoise.Thispaperwillprovideanoverviewoftheapplicationofthe112-dimensionalspectralestimationinhelicoptersoundsignalfeatureextraction,discussingitsadvantages,methodologies,andpotentialfuturedevelopments. 1.Introduction 1.1Background 1.2ObjectivesandSignificanceoftheStudy 2.HelicopterNoiseandSoundSignalCharacteristics 2.1HelicopterNoiseOverview 2.2SoundSignalCharacteristics 2.3ChallengesinHelicopterSoundSignalFeatureExtraction 3.SpectralEstimationTechniquesforSoundSignalAnalysis 3.1TraditionalSpectralEstimationMethods 3.2TheEmergenceofMultidimensionalSpectralEstimationTechniques 3.3AdvantagesandLimitationsof112-DimensionalSpectralEstimation 4.112-DimensionalSpectralEstimationMethodology 4.1Overviewofthe112-DimensionalSpectralEstimationTechnique 4.2DataPreprocessingandCleaning 4.3FeatureExtractionProcessusing112-DimensionalSpectralEstimation 4.4InterpretationandClassificationofExtractedFeatures 5.Applicationsof112-DimensionalSpectralEstimationinHelicopterNoiseAnalysis 5.1IdentificationofDominantNoiseComponents 5.2SourceLocalizationandMapping 5.3ComparisonwithTraditionalSoundSignalFeatureExtractionMethods 6.CaseStudiesandResults 6.1CaseStudy1:HelicopterNoiseAssessmentinUrbanEnvironment 6.2CaseStudy2:EffectivenessofNoiseControlMeasuresusing112-DimensionalSpectralEstimation 6.3ResultsandDiscussion 7.FutureDevelopmentsandChallenges 7.1PotentialImprovementsto112-DimensionalSpectralEstimation 7.2IntegrationwithMachineLearningAlgori

快乐****蜜蜂
实名认证
内容提供者


最近下载