

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种基于级联神经网络的飞机检测方法 1.Introduction Airplanedetectiontechnologyisanimportantcomponentofmanyapplications,frommilitarysurveillancetociviliansafety.Detectingaplaneeffectivelyandefficientlycanbeasurprisinglydifficulttask,especiallywhentheplaneisflyingathighspeedorlowaltitude.Thedetectionofaircraftinremoteareasorinadverseweatherconditionscanbeespeciallychallenging,astheusualmethodsofdetectingplanesmaynotalwayswork. Traditionalmethodsofairplanedetectionhaveinvolvedusingspecialequipmentsuchasradarorsonar.However,thesemethodsdonotworkwellincertaincontexts,suchasinurbanenvironmentswheretheremaybealotofbackgroundnoise.Inaddition,suchmethodsmaybeexpensiveandrequirealotofequipment. Recently,machinelearninganddeeplearningalgorithmshaveemergedaspowerfulandeffectivetoolsfordetectingairplanes.Inparticular,theuseofconvolutionalneuralnetworks(CNNs)hasfoundgreatsuccessinobjectdetectiontasks,includingdetectingairplanes. Thispaperpresentsamethodfordetectingairplanesusingacascadeneuralnetwork,whichisanextensionofthetraditionalCNN.Theproposedmethodusesaseriesofneuralnetworkstodetectairplanesatdifferentscales,whichallowsforgreateraccuracyandefficiencythanpreviousmethods. 2.CascadeNeuralNetworkforAirplaneDetection Theproposedmethodforairplanedetectioninvolvesacascadeneuralnetwork(CNN),whichisanextensionofthetraditionalCNN.ACNNtypicallyconsistsofmultiplelayers,includingconvolutionallayers,poolinglayers,andfullyconnectedlayers.Theselayersworktogethertodetectpatternsandfeaturesininputdata,suchasimages. AcascadeneuralnetworkissimilartoatraditionalCNN,exceptthatitincludesmultiplesub-networksthatoperateatdifferentscales.Eachsub-networkistrainedtodetectairplanesataspecificscale,whichallowsformoreefficientandaccuratedetection. Thecascadeneuralnetworkworksbyprocessinganimageatdifferentscales,fromcoarsetofine.Thefirstsub-networkinthecascadedetectslargeairplanesintheimage,whilethesubsequentsub-networksfocusonsmallerandmoredetailedfeaturesoftheairplane.Theoutputofeachsub-networkisthenpassedtothenextsub-ne

快乐****蜜蜂
实名认证
内容提供者


最近下载