

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种以神经网络为支撑的地下水位预测方法 Title:ANeuralNetwork-basedApproachforGroundwaterLevelPrediction Abstract: Groundwaterisavitalandfiniteresourcethatplaysacrucialroleinvarioussectorssuchasagriculture,industry,anddomesticwatersupply.Theaccuratepredictionofgroundwaterlevelsisessentialforeffectivewaterresourcemanagementanddecision-making.Thispaperproposesanovelapproachthatutilizesneuralnetworksasaframeworkforpredictinggroundwaterlevels.Theobjectiveistodevelopanaccurateandreliablemodelthatcancapturethecomplexrelationshipsbetweenvariousinfluencingfactorsandgroundwaterlevels. Introduction: Groundwaterlevelpredictionisachallengingtaskduetotheinherentcomplexityofthehydrologicalsystemandthepresenceofvariousdynamicfactors.Traditionalmethods,suchasstatisticalmodels,havebeenemployedwithlimitedsuccessincapturingthenon-linearandtime-varyingcharacteristicsofgroundwatersystems.Inrecentyears,machinelearningtechniques,particularlyneuralnetworks,haveemergedasapowerfultoolfornonlinearregressionandpredictiontasks.Thispaperaimstoexplorethepotentialofneuralnetworksinmodelingandpredictinggroundwaterlevels. Methodology: Theproposedmethodologyconsistsofthreemainstages:datapreprocessing,modeltraining,andprediction.Inthedatapreprocessingstage,thecollectedgroundwaterleveldataiscarefullycleaned,filtered,andnormalizedtoensurethereliabilityandconsistencyoftheinputdataset.Missingvaluesoroutliersareimputedorremovedusingsuitabletechniques. Inthemodeltrainingstage,afeed-forwardneuralnetworkarchitectureisemployed.Thechoiceofthenetworkarchitecturedependsonthecomplexityoftheproblem.Theinputlayerofthenetworkconsistsofvariousinfluencingfactorssuchasprecipitation,temperature,evapotranspiration,groundwaterrecharge,andlandusecharacteristics.Thesefactorsareselectedbasedontheirknowninfluenceongroundwaterlevelsanddomainknowledge. Thehiddenlayersofthenetworkcapturethenonlinearrelationshipsbetweentheinputfactorsandtheoutputgroundwaterlevels.Thenumberofhiddenlayersandneuronsareexperimentallydeterminedtooptimizetheperformanceofthe

快乐****蜜蜂
实名认证
内容提供者


最近下载