

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种基于卷积神经网络的人群密度识别算法 Title:AConvolutionalNeuralNetwork-BasedCrowdDensityRecognitionAlgorithm Abstract: Withtherapiddevelopmentofcomputervisiontechnology,crowddensityrecognitionhasbecomeanessentialresearchareawithextensiveapplicationsinvariousfields,includingpublicsafety,crowdcontrol,andurbanplanning.Thispaperpresentsanovelcrowddensityrecognitionalgorithmbasedonconvolutionalneuralnetworks(CNNs).Theproposedalgorithmaimstoaccuratelyestimatecrowddensityfromimagescapturedbysurveillancecamerastoprovideusefulinformationforeffectivecrowdmanagement. 1.Introduction: Understandingcrowddensityiscrucialforvariousapplicationssuchascrowdmonitoring,eventplanning,andpublicsafety.Traditionalcrowddensityrecognitionmethodsoftenrelyonhumanestimationormanualcounting,whichareerror-proneandtime-consuming.Inrecentyears,CNNshaveshownremarkableperformanceincomputervisiontasks,includingobjectrecognition,segmentation,anddetection.ThispaperproposesaCNN-basedcrowddensityrecognitionalgorithmthatdemonstratessuperioraccuracyandefficiency. 2.RelatedWork: Thissectionprovidesanoverviewoftheexistingapproachestocrowddensityrecognition.Itreviewstraditionalmethodsbasedonhandcraftedfeaturesandexplainsthelimitationsoftheseapproaches.Subsequently,itdiscussestheapplicationofCNNsincrowdanalysistasksandhighlightstheiradvantagesovertraditionalmethods. 3.DataCollectionandPreprocessing: Totrainandevaluatetheproposedalgorithm,adatasetofcrowdimagesisrequired.Thissectiondescribesthedatacollectionprocess,includingimageacquisitionthroughsurveillancecameras,annotationofcrowddensity,anddatasetconstruction.Additionally,itexplainsthepreprocessingstepssuchasimageresizing,normalization,andaugmentationtechniquesemployedtoenhancethemodel'srobustness. 4.ConvolutionalNeuralNetworkArchitecture: TheproposedalgorithmutilizesadeepCNNarchitecturedesignedspecificallyforcrowddensityrecognition.Thissectionpresentsthearchitecture,whichconsistsofconvolutionallayers,poolinglayers,andfullyconnectedlayers.Thechosenarchitectureismotivatedbyitsa

快乐****蜜蜂
实名认证
内容提供者


最近下载