

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种光纤陀螺随机漂移的高精度建模方法 Title:AHigh-PrecisionModelingMethodforRandomDriftinFiberOpticGyroscopes Abstract: Fiberopticgyroscopes(FOGs)arewidelyusedinnavigationalandstabilizationsystemsduetotheirhighaccuracyandcompactsize.However,oneofthemainchallengesinFOGsisthepresenceofrandomdrift,whichcansignificantlyaffecttheaccuracyandreliabilityofthegyro.Inthispaper,weproposeahigh-precisionmodelingmethodtoeffectivelycharacterizetherandomdriftinFOGs.TheproposedmethodcombinesadvancedsignalprocessingtechniquesandmathematicalmodelingtoimprovetheaccuracyandstabilityofFOGs. 1.Introduction 1.1Background FiberopticgyroscopesarebasedontheSagnaceffectandhavebecomeessentialcomponentsinmanyindustries,includingaerospace,navigation,androbotics.However,theaccuracyofFOGsisinfluencedbyvariousfactors,suchastemperaturevariations,mechanicalvibrations,andpolarizationfluctuations.Amongthesefactors,randomdriftisoneofthemostsignificantchallengesinFOGtechnology. 1.2Motivation AccuratemodelingofrandomdriftinFOGsiscrucialforimprovingtheperformanceandreliabilityofthesedevices.Traditionalmodelingmethodshavecertainlimitationsintermsofaccuracyandprecision.Therefore,thereisaneedforahigh-precisionmodelingmethodthatcaneffectivelycharacterizetherandomdriftinFOGs. 2.Methodology 2.1DataCollection TodevelopanaccuratemodelforrandomdriftinFOGs,alargedatasetofreal-worldmeasurementsiscollected.TheFOGissubjectedtovariousenvironmentalconditionsandoperationalscenariostocapturethediverserangeofdriftpatterns. 2.2Preprocessing Thecollecteddataispreprocessedtoremovenoiseandartifactsthatcouldaffecttheaccuracyofmodeling.Techniquessuchaslow-passfilteringandwaveletdenoisingareappliedtoenhancethesignal-to-noiseratio. 2.3FeatureExtraction Inthisstep,relevantfeaturesareextractedfromthepreprocesseddata.Featuresmayincludestatisticalmeasuressuchasmean,variance,andskewness,aswellasfrequency-domaincharacteristicssuchaspowerspectraldensityanddominantfrequencies. 2.4MachineLearning-basedModeling Machinelearningalgorithms,suchassupportvectormachi

快乐****蜜蜂
实名认证
内容提供者


最近下载