

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种预测醇化学位移的新方法(英文) Title:ANovelApproachforPredictingAlcoholicChemicalShifts Abstract: Chemicalshiftpredictionisacriticalaspectofnuclearmagneticresonance(NMR)spectroscopy,particularlyinthefieldoforganicchemistry.Accuratepredictionsofchemicalshiftscanaidintheidentificationandcharacterizationofcompounds,facilitatingelucidationoftheirstructuresandproperties.Inthispaper,wepresentanovelmethodforpredictingalcoholicchemicalshifts,whichemploysmachinelearningalgorithmstrainedonacomprehensivedatasetofexperimentalNMRspectra.Ourapproachaimstoimprovetheaccuracyandefficiencyofchemicalshiftpredictions,offeringsignificantadvantagesoverexistingmethods. Introduction: Chemicalshiftsarevaluableindicatorsofmolecularstructureandenvironment.Inthecaseofalcoholiccompounds,thechemicalshiftoftheprotonattachedtothealcoholfunctionalgroupisofparticularinterest.Accuratepredictionsofalcoholicchemicalshiftscanassistindeterminingthenatureandconfigurationofalcohols,enablingresearcherstomakeinformeddecisionsduringsyntheticandanalyticalprocesses. Existingmethodsforpredictingchemicalshiftstypicallyrelyonempiricalrules,suchaschemicalshiftincrementsoradditivecorrectionsbasedonfunctionalgroups.Whilethesemethodshaveprovidedusefulapproximations,theyoftenlackaccuracy,especiallywhendealingwithcomplexanddiversechemicalsystems.Additionally,empiricalrulesmaynoteffectivelycapturesubtlechangesinchemicalenvironment,limitingtheirpredictivepower.Inthisstudy,weproposeamachinelearning-basedapproachtoaddresstheselimitationsandimprovethepredictionofalcoholicchemicalshifts. Methodology: Todevelopourpredictionmodel,weutilizedadiversedatasetcontainingexperimentalNMRspectraofalcoholiccompoundswithknownchemicalshifts.Thisdatasetwascarefullycuratedandaugmentedtoensurerepresentationacrossvariousstructuralfeaturesandsolventenvironments.Thespectrawerepreprocessedtoextractrelevantfeatures,suchaspeakintegrals,couplingconstants,andotherspectralparameters. Weemployedseveralmachinelearningalgorithms,includingrandomforests,supportvectorma

快乐****蜜蜂
实名认证
内容提供者


最近下载