一种改进XGboost的DoH流量分类方法.docx 立即下载
2024-12-07
约3.8千字
约2页
0
11KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

一种改进XGboost的DoH流量分类方法.docx

一种改进XGboost的DoH流量分类方法.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种改进XGboost的DoH流量分类方法
Title:EnhancedXGBoostApproachforDNSoverHTTPS(DoH)TrafficClassification
Abstract:
TheincreasingadoptionofDNSoverHTTPS(DoH)hasintroducednewchallengesfornetworktrafficclassification.ThispaperpresentsanenhancedXGBoostapproachtoaddressthesechallengesandimprovetheaccuracyofDoHtrafficclassification.WeproposeanovelfeatureengineeringtechniqueandleveragetheadvancedcapabilitiesofXGBoosttoovercomelimitationsinexistingmethods.Experimentalresultsdemonstratetheeffectivenessofourapproach,showcasingitspotentialforaccurateDoHtrafficclassification.
1.Introduction
DNSoverHTTPS(DoH)isaprotocolthatencryptsDNSqueriesusingHTTPS,providingimprovedprivacyandsecurity.However,italsointroduceschallengesfortraditionalnetworktrafficclassificationtechniques,asitmasksthepayloadcontents.AccurateidentificationofDoHtrafficiscrucialfornetworkmanagement,securityanalysis,andmonitoringpurposes.ThispaperaimstoenhancetheclassificationofDoHtrafficusingtheXGBoostalgorithm.
2.RelatedWork
ThissectiondiscussesexistingapproachesforDoHtrafficclassification.CurrentmethodologiesmainlyrelyonstatisticalandmachinelearningtechniquessuchasnaiveBayes,decisiontrees,andrandomforests.However,thesemethodsoftenstruggletoaccuratelyclassifyDoHtrafficduetotheencryptednatureoftheprotocol.
3.Proposals
Inthissection,wepresentourenhancedXGBoostapproachforDoHtrafficclassification.Themaincontributionsareasfollows:
a)Novelfeatureengineering:WeproposeasetofnewfeaturesthatcapturespecificpatternsandcharacteristicsofDoHtraffic.Thesefeaturesincludepacketsizestatistics,flowfeatures,andfrequency-basedfeatures.ByincorporatingthesefeaturesintotheXGBoostmodel,weaimtoenhancetheaccuracyofDoHtrafficclassification.
b)XGBoostoptimization:WeexploittheadvancedcapabilitiesoftheXGBoostalgorithm,includinggradientboosting,regularization,andensemblelearning.ThesetechniqueshelpinhandlingtheinherentnoiseandimbalanceinDoHtrafficdata,furtherimprovingtheaccuracyofclassification.
4.ExperimentalSetup
Toevaluatetheeffectivenessofourproposedappro
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

一种改进XGboost的DoH流量分类方法

文档大小:11KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用