

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于LSTM算法的电子部件故障预测 1.Introduction Withthedevelopmentofscienceandtechnology,electronicdeviceshavebecomeanindispensablepartofpeople'sdailylives.However,theseelectronicdevicesmayoccasionallyfail,resultinginseriousconsequences,especiallyinthefieldsofaerospace,military,andmedicalindustries.Therefore,predictingandpreventingequipmentfailureinadvancehasbecomeanimportantresearchdirection. LSTM(LongShort-TermMemory)algorithmisarecurrentneuralnetworkmodelwithstrongmemoryandpredictioncapabilities.Itiswidelyusedinvariousfields,suchasnaturallanguageprocessing,imagerecognition,andtimeseriesprediction.Inrecentyears,LSTMalgorithmhasalsoshowngoodperformanceinelectroniccomponentfaultprediction. 2.RelatedWork ManyscholarshaveconductedresearchonelectroniccomponentfaultpredictionbasedonLSTMalgorithm.Forexample,Chenetal.(2020)proposedanLSTM-basedpredictionmodelforbearingfaults.Theresultsshowthatthemodelcaneffectivelypredictthefaultofthebearing.Lietal.(2018)usedtheLSTMalgorithmtopredicttheequipmentfailureofpowertransmissionandtransformationdevices.Theexperimentalresultsshowthatthemodelhasgoodpredictionaccuracyandcanprovideguidanceforequipmentmaintenance. 3.DataPreprocessing BeforeapplyingtheLSTMalgorithmtofaultprediction,itisnecessarytopreprocessthedata.Thedatapreprocessingmainlyincludesdatacleaning,featureextraction,andnormalization.Inthispaper,weusethefaultdataofelectronicdevicesprovidedbyacertainenterpriseforanalysis. Firstly,weremovethemissingdataandabnormaldatatoensurethereliabilityofthedata.Then,weselecttherelevantfeaturesinthedata,suchasvoltage,current,signalfrequency,andwaveform,astheinputvariablesoftheLSTMmodel.Finally,wenormalizethedatatoensurethattheinputdataofthemodelsatisfiesthestandardnormaldistribution. 4.LSTMModel TheLSTMalgorithmisaspecialRNN(RecurrentNeuralNetwork)modelthathasbetterperformanceinprocessingsequencedata.ComparedwithtraditionalRNNmodels,theLSTMmodelhasamorecomplexstructureandcanmaintainthelong-termdependenceofsequences.Moreover,theLSTMmodelcandistinguishbetwee

快乐****蜜蜂
实名认证
内容提供者


最近下载