基于LSTM算法的电子部件故障预测.docx 立即下载
2024-12-08
约3.5千字
约2页
0
11KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

基于LSTM算法的电子部件故障预测.docx

基于LSTM算法的电子部件故障预测.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于LSTM算法的电子部件故障预测
1.Introduction
Withthedevelopmentofscienceandtechnology,electronicdeviceshavebecomeanindispensablepartofpeople'sdailylives.However,theseelectronicdevicesmayoccasionallyfail,resultinginseriousconsequences,especiallyinthefieldsofaerospace,military,andmedicalindustries.Therefore,predictingandpreventingequipmentfailureinadvancehasbecomeanimportantresearchdirection.
LSTM(LongShort-TermMemory)algorithmisarecurrentneuralnetworkmodelwithstrongmemoryandpredictioncapabilities.Itiswidelyusedinvariousfields,suchasnaturallanguageprocessing,imagerecognition,andtimeseriesprediction.Inrecentyears,LSTMalgorithmhasalsoshowngoodperformanceinelectroniccomponentfaultprediction.
2.RelatedWork
ManyscholarshaveconductedresearchonelectroniccomponentfaultpredictionbasedonLSTMalgorithm.Forexample,Chenetal.(2020)proposedanLSTM-basedpredictionmodelforbearingfaults.Theresultsshowthatthemodelcaneffectivelypredictthefaultofthebearing.Lietal.(2018)usedtheLSTMalgorithmtopredicttheequipmentfailureofpowertransmissionandtransformationdevices.Theexperimentalresultsshowthatthemodelhasgoodpredictionaccuracyandcanprovideguidanceforequipmentmaintenance.
3.DataPreprocessing
BeforeapplyingtheLSTMalgorithmtofaultprediction,itisnecessarytopreprocessthedata.Thedatapreprocessingmainlyincludesdatacleaning,featureextraction,andnormalization.Inthispaper,weusethefaultdataofelectronicdevicesprovidedbyacertainenterpriseforanalysis.
Firstly,weremovethemissingdataandabnormaldatatoensurethereliabilityofthedata.Then,weselecttherelevantfeaturesinthedata,suchasvoltage,current,signalfrequency,andwaveform,astheinputvariablesoftheLSTMmodel.Finally,wenormalizethedatatoensurethattheinputdataofthemodelsatisfiesthestandardnormaldistribution.
4.LSTMModel
TheLSTMalgorithmisaspecialRNN(RecurrentNeuralNetwork)modelthathasbetterperformanceinprocessingsequencedata.ComparedwithtraditionalRNNmodels,theLSTMmodelhasamorecomplexstructureandcanmaintainthelong-termdependenceofsequences.Moreover,theLSTMmodelcandistinguishbetwee
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

基于LSTM算法的电子部件故障预测

文档大小:11KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用