

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于RCS信息的雷达目标大小分类方法 Title:RadarTargetSizeClassificationMethodbasedonRCSInformation Abstract: Radarsystemsplayacrucialroleintargetdetectionandclassificationinvariousapplicationsrangingfromairtrafficcontroltomilitarysurveillance.Targetsizeclassificationisoneoftheimportanttasksinradartargetrecognition,asitprovidesvaluableinformationforunderstandingthenatureandcharacteristicsofdetectedobjects.Inthispaper,weproposearadartargetsizeclassificationmethodbasedonRadarCrossSection(RCS)information.ThemethodutilizesmachinelearningtechniquestoanalyzetheRCSdataofdetectedtargetsandclassifythemintodifferentsizecategories.Experimentalresultsdemonstratetheeffectivenessoftheproposedmethodinaccuratelycategorizingtargetsbasedontheirsize. 1.Introduction: Withtheincreasingcomplexityanddensityofmodernradarapplications,theabilitytoaccuratelyclassifydifferenttypesandsizesoftargetshasbecomecritical.Sizeclassificationisparticularlyimportantasitenablestheradarsystemtodifferentiatebetweendifferentobjectsandestimatetheirphysicaldimensions.Inthispaper,weproposeamethodthatutilizesRCSinformationtoclassifytargetsbasedontheirsize. 2.RadarCrossSection(RCS): RadarCrossSection(RCS)isameasureofthereflectivecharacteristicsofatargetinradarsystems.Itprovidesvaluableinformationaboutthesize,shape,andmaterialcompositionofthetarget.RCSinformationisusuallyobtainedthroughanalysisofthereceivedradarsignal.ByanalyzingtheRCSdata,wecanextractmeaningfulfeaturesthatcanbeusedfortargetclassification. 3.FeatureExtraction: Inordertoclassifytargetsbasedontheirsize,weneedtoextractrelevantfeaturesfromtheRCSdata.Severalfeatureextractiontechniqueshavebeenproposedintheliterature,includingstatisticalfeatures,shapefeatures,andfrequencydomainfeatures.Inourmethod,weemployacombinationofthesefeaturestocapturethesize-relatedcharacteristicsofthetargets. 4.MachineLearningClassification: Toclassifythetargetsbasedontheirsize,weemploymachinelearningtechniques.Wetrainaclassifierusingalabeleddatasetoftargetswithknownsizes.Theextractedfeaturesareus

快乐****蜜蜂
实名认证
内容提供者


最近下载