您所在位置: 网站首页 / 二项式分布的应用条件概率.pptx / 文档详情
二项式分布的应用条件概率.pptx 立即下载
2024-12-21
约2.1千字
约42页
0
1.6MB
举报 版权申诉
预览加载中,请您耐心等待几秒...

二项式分布的应用条件概率.pptx

二项式分布的应用条件概率.pptx

预览

免费试读已结束,剩余 37 页请下载文档后查看

20 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.2.1条件概率1.在具体情境中,了解条件概率的概念.
2.掌握求条件概率的两种方法.
3.利用条件概率公式解一些简单的实际问题.1.条件概率的概念.(难点)
2.条件概率的求法及应用.(重点)在一次英语口试中,共有10道题可选择.从中随机地抽取5道题供考生回答,答对其中3道题即可及格.假设作为考生的你,只会答10道题中的6道题.
那么,你及格的概率是多少?在抽到的第一题不会答的情况下你及格的概率又是多少?1.条件概率的概念
设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.
P(B|A)读作发生的条件下,发生的概率.
2.条件概率的性质
(1)P(B|A)∈.
(2)如果B与C是两个互斥事件,
则P(B∪C|A)=.答案:C解析:设“任选一人是女生”为事件A,“任选一人来自北京”为事件B,依题意知来自北京的学生中有女生8名,这是一个条件概率,即计算P(B|A).答案:B3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A=“三个人去的景点不相同”,B=“甲独自去一个景点”,则概率P(A|B)等于________.4.某次数学考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,其中甲班10名同学中有4人及格,乙班10名同学有5人及格,现从两班10名同学中各抽取1人,已知有人及格,求乙班同学不及格的概率.答案:B2.(2011·湖南高考)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=______;(2)P(B|A)=______.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”,求:
(1)事件A发生的条件下事件B发生的概率;
(2)事件B发生的条件下事件A发生的概率.[策略点睛]1.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为5”,事件B为“两颗骰子的点数之和大于8”,求事件B发生的条件下事件A发生的概率.2.抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的总数为4或6”,事件B为“两颗骰子的点数之和不大于8”,求事件A发生的条件下事件B发生的概率.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.[题后感悟]若事件B、C互斥,则P(B∪C|A)=P(B|A)+P(C|A),即为了求得比较复杂事件的概率.往往可以先把它分解成两个(若干个)互不相容的较简单事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.3.在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解析:设事件A为“该考生6道题全答对”,
事件B为“该考生答对了其中5道题,另一道答错”,
事件C为“该考生答对了其中4道题,另2道答错”,
事件D为“该考生在这次考试中通过”,
事件E为“该考生在这次考试中获得优秀”,
则A、B、C两两互斥,且D=A∪B∪C,
由古典概型的概率公式及加法公式可知1.如何理解条件概率的存在?
一般地,每一个随机试验都是在一定条件下进行的,而这里所说的条件概率则是当试验结果的一部分信息已知(即在原随机试验的条件上,再加上“某事件发生”的附加条件),求另一事件在此条件下发生的概率.
[提醒]由于样本空间变化,事件B在“事件A已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的.2.如何理解条件概率公式?
(1)前提条件:P(A)>0
(2)条件概率公式揭示了条件概率P(B|A)与事件P(A),P(AB)三者之间的关系,由条件概率公式可以解决下列两类问题.
①已知P(A),P(AB),求P(B|A);
②已知P(A),P(B|A),求P(AB).3.条件概率需注意以下几点
(1)事件B在事件A已发生这个附加条件下的概率与没有这个附加条件的概率是不同的.
(2)所谓条件概率,是当试验结果的一部分信息已知(即在原随机试验的条件下,再加上一定的条件),求另一事件在此条件下的概率.
(3)已知事件A发生,在此条件下B发生,相当于AB发生,求P(B|A)时,可把A看做新的基本事件空间来计算B发生的概率,◎抛掷一枚骰子,
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

二项式分布的应用条件概率

文档大小:1.6MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用