




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
八年级数学教案 八年级数学教案(合集)作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?以下是小编为大家整理的八年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。八年级数学教案1创设情境1.什么叫平行四边形?平行四边形有什么性质?2.将以上的性质定理,分别用命题形式叙述出来。根据平行四边形的定义,我们研究了平行四边形的.其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?探究归纳平行四边形的判定方法:证明:两组对边分别相等的四边形是平行四边形已知:求证:做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形八年级数学教案2教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示投影2(书中的P2图1—2)并回答:1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。正方形B中有_______个小方格,即A的.面积为______个单位。正方形C中有_______个小方格,即A的面积为______个单位。2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A。B,C的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C之间有什么关系?2、图1—4中,A,B,C之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、想一想这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?五、巩固练习1、错例辨析:△ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边综上所述这个题目条件不足,第三边无法求得。2、练习P7§1.11六、作业课本P7§1.12、3、4八年级数学教案3教学目标:情意目标:培养学生团结协作的精神,体验探究成功的乐趣。能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。教学重点、难点重点:等腰梯形性质的探索;难点:梯形中辅助线的添加。教学课件:PowerPoint演示文稿教学方法:启发法、学习方法:讨论法、合作法、练习法教学过程:(一)导入1、出示图片,说出每辆汽车车窗形状(投影)2、板书课题:5梯形3、练习:下列图形中哪些图形是梯形?(投影)4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)6、

丹烟****魔王
实名认证
内容提供者


最近下载