您所在位置: 网站首页 / 高一数学教学设计精编.docx / 文档详情
高一数学教学设计精编.docx 立即下载
2025-08-17
约1.4万字
约30页
0
27KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高一数学教学设计精编.docx

高一数学教学设计精编.docx

预览

免费试读已结束,剩余 25 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高一数学教学设计

高一数学教学设计汇编9篇作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。如何把教学设计做到重点突出呢?以下是小编收集整理的高一数学教学设计,仅供参考,欢迎大家阅读。高一数学教学设计1教学目标1.知识目标:正确理解现阶段函数的概念,理解定义域的概念2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。3.情感目标:渗透数学来源于生活,运用于生活的思想。重点让学生理解现阶段函数的概念,定义域的概念。难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。学情分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。信息化教学资源1.动画设计《世界在不断的变化》2.专业录频软件;3.视频后期处理软件;4.QQ;5.其它图片、背景音乐。课前准备复习初中数学函数概念教学过程环节设计:教师活动、学生活动、设计意图环节一创设情境兴趣导入首先让学生观看视频《世界在不断的变化》老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。1看视频。2听老师解说,函数是研究世界变化规律的数学模型之一。3了解函数的作用,对函数产生兴趣。通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.用一个生活实例加深对知识的理解。实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的'运算。在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.所以我们重新定义函数,将自变量x的取值范围用集合D来表示.函数的定义:在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三知识总结(1)函数的概念。(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。环节四实例检测实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。高一数学教学设计2学习目标1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.掌握零点存在的判定定理.学习过程一、课前准备(预习教材P86~P88,找出疑惑之处)复习1:一元二次方程+bx+c=0(a0)的解法.判别式=.当0,方程有两根,为;当0,方程有一根,为;当0,方程无实根.复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学※学习探究探究任务一:函数零点与方程的根的关系问题:①方程的解为,函数的图象与x轴有个交点,坐标为.②方程的解为,函数的图象与x轴有个交点,坐标为.③方程的解为,函数的图象与x轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的.根就是相应二次函数的图象与x轴交点的.你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zeropoint).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为;(2)函数的零点为.小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:①作出的图象,求的值,观察和的符号②观察下面函数的图象,在区间上零点;0;在区间上零点;0;在区间上零点;0.新知:如果函数在区间上的图象是连续不断的一条曲线
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高一数学教学设计精编

文档大小:27KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用