




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
新疆吐鲁番市高昌区第一中学2025年八年级数学上学期期中经典试题含解析 一、单选题(本题共8小题,每题5分,共40分) 1、若,则的值是() A.1 B.2 C.3 D.4 2、下列根式中,是最简二次根式的是() A. B. C. D. 3、二次根式的值是() A.﹣3 B.3或﹣3 C.9 D.3 4、我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为(). A.49 B.25 C.13 D.1 5、下列实数中,是无理数的是() A.3.14159265 B. C. D. 6、已知有意义,则的取值范围是() A. B. C. D.且 7、边长为,的长方形,它的周长为,面积为,则的值为() A. B. C. D. 8、在下面数据中,无理数是() A. B. C. D.0.585858… 二、填空题(本题共11小题,每题3分,共33分) 9、如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=50,∠CAP=______. 10、因式分解:_________. 11、如图,∠BCD是△ABC的外角,CE平分∠BCD,若AB=AC,∠ECD=1.5°,则∠A的度数为_____. 12、在学习平方根的过程中,同学们总结出:在中,已知底数和指数,求幂的运算是乘方运算:已知幂和指数,求底数的运算是开方运算.小明提出一个问题:“如果已知底数和幕,求指数是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究. 小明课后借助网络查到了对数的定义: 小明根据对数的定义,尝试进行了下列探究: ∵,∴; ∵,∴; ∵,∴; ∵,∴; 计算:________. 13、关于的分式方程的解为负数,则的取值范围是_____. 14、一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________. 15、如图,A(3,4),B(0,1),C为x轴上一动点,当△ABC的周长最小时,则点C的坐标为_________. 16、某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元? (利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________. 17、数0.0000046用科学记数法表示为:__________. 18、如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________. 19、甲、乙两车从A地出发,匀速驶往B地.乙车出发后,甲车才沿相同的路线开始行驶.甲车先到达B地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离与甲车行驶的时间的函数关系的图象,则其中正确的序号是___________.①甲车的速度是;②A,B两地的距离是;③乙车出发时甲车到达B地;④甲车出发最终与乙车相遇 三、解答题(本题共7小题,每题11分,共77分) 20、已知:∠1=∠2,∠3=∠1.求证:AC=AD 21、已知:如图,,点是的中点,平分,. (1)求证:; (2)若,试判断的形状,并说明理由. 22、某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示: 根据图示信息,整理分析数据如下表: 平均数(分)中位数(分)众数(分)初中部85高中部85100(说明:图中虚线部分的间隔距离均相等) (1)求出表格中的值; (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定. 23、(1)分解因式:(x﹣2)2﹣2x+4 (2)解方程:. 24、如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n). (1)求直线AB的解析式和点B的坐标; (2)求△ABP的面积(用含n的代数式表示); (3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标. 25、年月日是我国第六个南京大屠杀难者国家公祭日,某校决定开展铭记历史珍爱和平”主题演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加

灵波****ng
实名认证
内容提供者


最近下载