




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
湖南省长沙市名校2025年八年级数学第一学期期中综合测试模拟试题含解析 一、单选题(本题共8小题,每题5分,共40分) 1、若关于的方程有正数根,则的取值范围是() A. B. C. D.且 2、已知:AB=AD,∠C=∠E,CD、BE相交于O,下列结论:(1)BC=DE,(2)CD=BE,(3)△BOC≌△DOE;其中正确的是() A.0个 B.1个 C.2个 D.3个 3、下列图形中,为轴对称图形的是() A. B. C. D. 4、两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:①;②;③.其中正确的是() A.②③ B.①②③ C.①② D.①③ 5、下列计算正确的是() A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab2 6、下列命题是假命题的是() A.角平分线上的点到角两边的距离相等 B.直角三角形的两个说角互余 C.同旁内角互补 D.一个角等于60°的等腰三角形是等边三角形 7、若多项式与多项式的积中不含x的一次项,则() A. B. C. D. 8、下列计算正确的是() A.(a2)3=a5 B.(15x2y﹣10xy2)÷5xy=3x﹣2y C.10ab3÷(﹣5ab)=﹣2ab2 D.a﹣2b3•(a2b﹣1)﹣2= 二、填空题(本题共11小题,每题3分,共33分) 9、因式分解=. 10、若的平方根是±3,则__________. 11、在△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是________. 12、如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________. 13、如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________. 14、如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________. 15、是方程组的解,则. 16、若,,则______. 17、一个容器由上下竖直放置的两个圆柱体A,B连接而成,向该容器内匀速注水,容器内水面的高度h(厘米)与注水时间t(分钟)的函数关系如图所示,若上面A圆柱体的底面积是10厘米2,下面B圆柱体的底面积是50厘米2,则每分钟向容器内注水________厘米1. 18、如果方程有增根,那么______. 19、若分式的值为0,则x的值为___________. 三、解答题(本题共7小题,每题11分,共77分) 20、已知求的值; 已知,求的值; 已知,求的值. 21、如图,在中,,为的中点,,,垂足为、, 求证:. 22、先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值. 23、王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合. (1)求证:; (2)求两堵木墙之间的距离. 24、在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F. (1)如图①,当点E是线段BC的中点时,求证:AF=AB+CF; (2)如图②,当∠BAE=30°时,求证:AF=2AB﹣2CF; (3)如图③,当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明. 25、(1)如图,已知的顶点在正方形方格点上每个小正方形的边长为1.写出各顶点的坐标 (2)画出关于y轴的对称图形 26、如图,在四边形ABCD中,∠B=90°,AB∥ED,交BC于E,交AC于F,DE=BC,. (1)求证:△FCD是等腰三角形 (2)若AB=3.5cm,求CD的长. 参考答案 一、单选题(本题共8小题,每题5分,共40分) 1、答案:A 【分析】分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围. 【详解】去分母得:2x+6=1x+1k, 解得:x=6﹣1k, 根据题意得:6﹣1k>0,且6﹣1k≠﹣1,6﹣1k≠﹣k, 解得:k<2且k≠1. ∴k<2. 故选:A. 本题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值. 2、答案:D 【分析】根据已知条件证明△ABE≌△ADC,即可依次证明判定. 【详解

猫巷****熙柔
实名认证
内容提供者


最近下载