




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
2011年4月自考线性代数(经管类)试题和参考答案(5篇可选) 第一篇:2011年4月自考线性代数(经管类)试题和参考答案全国2011年4月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.下列等式中,正确的是()A.B.3=C.5D.2.下列矩阵中,是初等矩阵的为()A.B.C.D.3.设A、B均为n阶可逆矩阵,且C=,则C-1是()A.B.C.D.4.设A为3阶矩阵,A的秩r(A)=3,则矩阵A*的秩r(A*)=()A.0B.1C.2D.35.设向量,若有常数a,b使,则(A.a=-1,b=-2B.a=-1,b=2C.a=1,b=-2D.a=1,b=26.向量组的极大线性无关组为()A.B.C.D.7.设矩阵A=,那么矩阵A的列向量组的秩为()A.3B.2C.1D.08.设是可逆矩阵A的一个特征值,则矩阵有一个特征值等于()A.B.C.D.)9.设矩阵A=,则A的对应于特征值的特征向量为()A.(0,0,0)TB.(0,2,-1)TC.(1,0,-1)TD.(0,1,1)T10.二次型f(x1,x2,x3)2x12x1x2x22的矩阵为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式__________.301134102010212.行列式105中第4行各元素的代数余子式之和为__________.13.设矩阵A=,B=(1,2,3),则BA=__________.12314.设3阶方阵A的行列式|A|=,则|A|=__________.-1-12215.设A,B为n阶方阵,且AB=E,AB=BA=E,则A+B=__________.16.已知3维向量=(1,-3,3),(1,0,-1)则+3=__________.17.设向量=(1,2,3,4),则的单位化向量为__________.18.设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组Ax=0的通解为__________.19.设3阶矩阵A与B相似,若A的特征值为,111234,则行列式|B-1|=__________.20.设A=是正定矩阵,则a的取值范围为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.已知矩阵A=,B=,求:(1)ATB;(2)|ATB|.22.设A=23.求向量组组.x1x23x3x4124.判断线性方程组2x1x2x34x42是否有解,有解时求出它的解.x4x5x1341,B=,C=,且满足AXB=C,求矩阵X.=(1,2,1,0)T,=(1,1,1,2)T,=(3,4,3,4)T,=(4,5,6,4)T的秩与一个极大线性无关25.已知2阶矩阵A的特征值为=1,=9,对应的特征向量依次为26.已知矩阵A相似于对角矩阵Λ=四、证明题(本大题共6分)27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:(1)AB-BA为对称矩阵;(2)AB+BA为反对称矩阵.,求行列式|A-E|的值.=(-1,1)T,=(7,1)T,求矩阵A.第二篇:2013.10自考线性代数经管类试题线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩。选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。1.设行列式a11a12a21a22=3,删行列式a112a125a11a212a225a21B.-6D.15=A.-15C.62.设A,B为4阶非零矩阵,且AB=0,若r(A)=3,则r(B)=A.1C.3B.2D.43.设向量组1=(1,0,0)T,2=(0,1,0)T,则下列向量中可由1,2线性表出的是A.(0,-1,2)TC.(-1,0,2)TB.(-1,2,0)TD.(1,

书生****12
实名认证
内容提供者


最近下载