您所在位置: 网站首页 / 不等式证明若干方法.docx / 文档详情
不等式证明若干方法.docx 立即下载
2025-08-26
约2.3万字
约40页
0
33KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

不等式证明若干方法.docx

不等式证明若干方法.docx

预览

免费试读已结束,剩余 35 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

不等式证明若干方法

第一篇:不等式证明若干方法安康学院数统系数学与应用数学专业11级本科生论文(设计)选题实习报告11级数学与应用数学专业《科研训练2》评分表注:综合评分60的为“及格”;第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)例1已知a+b≥0,求证:a3+b3≥a2b+ab2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。∵(a3+b3)(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明:=(a-b)2(a+b)又∵(a-b)2≥0a+b≥0∴(a-b)2(a+b)≥0即a3+b3≥a2b+ab2例2设a、b∈R+,且a≠b,求证:aabb>abba分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小证明:由a、b的对称性,不妨解a>b>0则aabbabba=aa-bbb-a=(ab)a-b∵ab0,∴ab1,a-b0∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba练习1已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)(2)若a、b∈R+,则a+b≥2ab(当且仅当a=b时,取等号)(3)若a、b同号,则ba+ab≥2(当且仅当a=b时,取等号)例3若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤1分析:通过观察可直接套用:xy≤x2+y22证明:∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立练习2:若ab0,证明a+1(a-b)b≥33综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252证明:∵a0,b0,a+b=1∴ab≤14或1ab≥4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn3求证:2f(n)≤f(2n)4分析法从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于|a-c|<c2-ab也不适用基本不等式法,用分析法较合适。要证c-c2-ab<a<c+c2-ab只需证-c2-ab<a-c<c2-ab证明:即证|a-c|<c2-ab即证(a-c)2<c2-ab即证a2-2ac<-ab∵a>0,∴即要证a-2c<-b即需证2+b<2c,即为已知∴不等式成立练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)25放缩法放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。例6:已知a、b、c、d都是正数求证:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

不等式证明若干方法

文档大小:33KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用