您所在位置: 网站首页 / 中心对称 教学设计方案.docx / 文档详情
中心对称 教学设计方案.docx 立即下载
2025-08-26
约2.7万字
约47页
0
40KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

中心对称 教学设计方案.docx

中心对称教学设计方案.docx

预览

免费试读已结束,剩余 42 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中心对称教学设计方案

第一篇:中心对称教学设计方案中心对称教学设计方案上传:张宗强更新时间:2012-5-277:45:56中心对称教学设计方案一、教材分析1.地位和作用本节课是学生在已经掌握了平移与轴对称两种图形变换的基础上进行学习的,它是第三种图形变换——旋转的特殊形式,为今后进一步学习图形变换奠定了基础,同时也为证明几何题时添加辅助线提供了一条重要途径。通过本节课的学习,培养学生的合作精神,在相互交流中增长能力,获得新知。另外,学习本节课对于培养学生理论联系实际,激发学生的学习兴趣都有好处。所以,本节课具有很重要的地位和作用。2.教学目标根据学生已有的认知基础,依据《新课程标准》和数学逻辑性强、重知识运用的特点,确定本节课的教学目标为:(1)知识技能目标:理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图.(2)过程性目标:在发现、探究的过程中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力.(3)情感与态度目标:利用图形探索中心对称的性质,让学生体验到数学与生活是紧密联系的,体会到生活中的对称美,发展学生的美感.3.教学重点与难点熟练掌握数学知识固然重要,但学会如何分析问题、解决问题的方法更为重要,所以理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图是本节的重点;尽管这个年龄段的学生有一定的认知能力和观察能力,但缺乏严谨的逻辑推理能力及知识的综合应用能力,因此确定中心对称的性质及利用中心对称的性质作图是本节的难点。【教学重点】理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图.【教学难点】中心对称的性质及利用中心对称的性质作图.二、学情分析九年级的学生具有个性活泼,思维活跃,求知欲强,对实验、探索性的问题充满好奇,学习情绪易于调动,学习积极性高的特点。因此,在数学活动中,引导学生采用自主探索与合作交流相结合的学习方式,让学生体验到数学活动充满了探索性和创造性。三、教学方法与学法引导1.教学方法数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对九年级学生的认知结构和心理特征,本节课选择“引导探索法”,由浅到深,由特殊到一般的提出问题,引导学生自主探索,合作交流,归纳总结,培养学生分析问题、解决问题的能力。这种教学理念紧随新课改理念,也反映了时代精神。2.学法引导新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参与到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。四、教学程序设计1、探究讨论形成概念观察实例(多媒体演示),回答问题:①把其中一个图案绕点o旋转180°,你有什么发现?②线段ac与bd相交于点o,oa=oc,ob=od,把△ocd绕点o旋转180o,你有什么发现?多媒体演示课件,教师提出以上两个问题.利用学生好奇心强的心理,通过动画演示,吸引学生的注意力,让学生观察、思考、回答问题,结合学生回答问题的情况,教师适时引导点拨,师生共同归纳出中心对称的定义,即:把一个图形绕某一个点旋转180o,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;这个点叫做对称中心;这两个图形中的对应点叫做关于中心的对称点.设计意图:从旋转变换的角度引入中心对称的概念,让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180o,)渗透了从一般到特殊的数学思想方法.2、实验操作总结性质旋转三角板,画关于点o对称的两个三角形(多媒体演示),过程分以下三步:(1)画出△abc.(2)以三角板的一个顶点o为中心,把三角板旋转180o,画出△a′b′c′.(3)移开三角板.在学生自己动手画出两个中心对称的三角形后,提出以下三个问题,让学生在作图的基础上思考问题,及时开展中心对称性质的研究。(1)分别连接对应点aa′、bb′、cc′.点o在线段aa′上吗?如果在,在什么位置?(2)△abc与△a′b′c′有什么关系?让学生尝试自己证明△abc与△a′b′c′全等。(3)你能从中得到什么结论?师生合作,归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.通过学生的动手操作,在老师的引导下自主探索中心对称的性质,这样既调动了学生学习的积极性和主动性,增强了学生积极参与教学活动的意识,又很好的培养了他们的观察能力、逻辑推理能力和语言表达能力。3、归纳类比完善新知比较中心对称与轴对称有哪些区别?
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

中心对称 教学设计方案

文档大小:40KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用