您所在位置: 网站首页 / 余弦定理定义及公式.docx / 文档详情
余弦定理定义及公式.docx 立即下载
2025-08-26
约9.8千字
约18页
0
21KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

余弦定理定义及公式.docx

余弦定理定义及公式.docx

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

余弦定理定义及公式

第一篇:余弦定理定义及公式余弦定理定义及公式余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。a²=b²+c²-2bccosA余弦定理证明如上图所示,△ABC,在c上做高,根据射影定理,可得到:将等式同乘以c得到:运用同样的方式可以得到:将两式相加:向量证明正弦定理和余弦定理正弦定理a/sinA=b/sinB=c/sinC=2R(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值正弦定理的变形1、2、(条件同上)在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径。已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题3、相关结论:正弦定理的证明显然,只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径即可。现将△ABC,做其外接圆,设圆心为O。我们考虑∠C及其对边AB。设AB长度为c。若∠C为直角,则AB就是⊙O的直径,即c=2R。若∠C为锐角或钝角,过B作直径BD交⊙O于D,连接DA,显然BD=2R。∵在同圆或等圆中直径所对的圆周角是直角。∴∠DAB是直角。若∠C为锐角,则D与C落于AB的同侧,此时∵在同圆或等圆中同弧所对的圆周角相等。若∠C为钝角,则D与C落于AB的异侧,此时∠D=180°-∠C,亦可推出在△DAB中,应用正弦函数定义,知因此,对任意三角形的任一角及其对边,均有上述结论。考虑同一个三角形内的三个角及三条边,应用上述结果。可得故对任意三角形,定理得证。正弦定理意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。第二篇:余弦定理公式的含义及其证明余弦定理公式的含义及其证明少三(2)宋伊辰在做参考书的时候,我有时会遇到“已知一个一般三角形的两边长及其夹角的度数,要求第三边长度”的情况。与直角三角形不同,这时直接求第三边长显得有些困难,往往要花很大力气。那么,有没有什么方法可以直接求解呢?我向爸爸提出了我的疑问。“可以用余弦定理求啊。”他回答道。“余弦定理是什么?”怀着满腹的疑问,我开始上网搜寻答案。余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题。如左图所示,在△ABC中,余弦定理可表示为:同理,也可描述为:那么,我们又如何证明余弦定理的成立呢?我又对此展开了探究。法一(代数证明):如右图所示,△ABC,在c上做高,将c边写作:将等式两边同乘以c得到:同理,①②①+②得:法二(运用相交弦定理证明):如图,在三角形ABC中,∠A=α,AB=a,BC=b,AC=c以B为圆心,以长边AB为半径做圆(这里要用长边的道理在于,这样能保证C点在圆内)。延长BC,交⊙B于点D和E∴DC=a-b,CE=a+b,AC=c∵AG=2acosα∴CG=2acosα-c。∵DC×CE=AC×CG∴(a-b)(a+b)=c(2acosα-c)化简得:b2a2c22ac(cosα),法三(平面几何):在△ABC中,已知AC=b,BC=a,∠C=γ,求c。过点A作AD⊥BC于D,∴AD=AC·sinγ=b·sinγ,CD=AC·cosγ=b·cosγ∴BD=BC-CD=a-b·cosγ在Rt△ABD中,∠ADB=90°∴AB2AD2BD2(b·sinγ)2+(a-b·cosγ)2﹦ab2abcosγ法四(解析几何):以点C为原点O,AC为x轴,建立如右图所示的平面直角坐标系。在△ABC中,AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0).|AB|2(acosCb)2(asinC0)2222acos2C2abcosCbasin2
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

余弦定理定义及公式

文档大小:21KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用