您所在位置: 网站首页 / 余弦定理教学设计.docx / 文档详情
余弦定理教学设计.docx 立即下载
2025-08-26
约1.7万字
约32页
0
29KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

余弦定理教学设计.docx

余弦定理教学设计.docx

预览

免费试读已结束,剩余 27 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

余弦定理教学设计

第一篇:余弦定理教学设计教学设计一、内容及其解析1.内容:余弦定理2.解析:余弦定理是继正弦定理教学之后又一关于三角形的边角关系准确量化的一个重要定理。在初中,学生已经学习了相关边角关系的定性的结果,就是“在任意三角形中大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,则这两个三角形全等”。同时学生在初中阶段能解决直角三角形中一些边角之间的定量关系。在高中阶段,学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握任意三角形中边角之间的定量关系,从而进一步运用它们解决一些与测量和几何计算有关的实际问题,使学生能更深地体会数学来源于生活,数学服务于生活。二、目标及其解析目标:1、使学生掌握余弦定理及推论,并会初步运用余弦定理及推论解三角形。2、通过对三角形边角关系的探究,能证明余弦定理,了解从三角方法、解析方法、向量方法和正弦定理等途径证明余弦定理。解析:1、在发现和证明余弦定理中,通过联想、类比、转化等思想方法比较证明余弦定理的不同方法,从而培养学生的发散思维。2、能用余弦定理解决生活中的实际问题,可以培养学生学习数学的兴趣,使学生进一步认识到数学是有用的。三、教学问题诊断分析1、通过前一节正弦定理的学习,学生已能解决这样两类解三角形的问题:①已知三角形的任意两个角与边,求其他两边和另一角;②已知三角形的任意两个角与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。而在已知三角形两边和它们的夹角,计算出另一边和另两个角的问题上,学生产生了认知冲突,这就迫切需要他们掌握三角形边角关系的另一种定量关系。所以,教学的重点应放在余弦定理的发现和证明上。2、在以往的教学中存在学生认知比较单一,对余弦定理的证明方法思考也比较单一,而本节的教学难点就在于余弦定理的证明。如何启发、引导学生经过联想、类比、转化多角度地对余弦定理进行证明,从而突破这一难点。3、学习了正弦定理和余弦定理,学生在解三角形中,如何适当地选择定理以达到更有效地解题,也是本节内容应该关注的问题,特别是求某一个角有时既可以用余弦定理,也可以用正弦定理时,教学中应注意让学生能理解两种方法的利弊之处,从而更有效地解题。四、教学支持条件分析为了将学生从繁琐的计算中解脱出来,将精力放在对定理的证明和运用上,所以本节中复杂的计算借助计算器来完成。当使用计算器时,约定当计算器所得的三角函数值是准确数时用等号,当取其近似值时,相应的运算采用约等号。但一般的代数运算结果按通常的运算规则,是近似值时用约等号。五、教学过程(一)教学基本流程教学过程:一、创设情境,引入课题问题1:在△ABC中,∠C=90°,则用勾股定理就可以得到c2=a2+b2。【设计意图】:引导学生从最简单入手,从而通过添加辅助线构造直角三角形。师生活动:引导学生从特殊入手,用已有的初中所学的平面几何的有关知识来研究这一问题,从而寻找出这些量之间存在的某种定量关系。学生1:在△ABC中,如图4,过C作CD⊥AB,垂足为D。在Rt△ACD中,AD=bsin∠1,CD=bcos∠1;在Rt△BCD中,BD=asin∠2,CD=acos∠2;c=(AD+BD)=b-CD+a-CD+2ADBD=ab2abcos1cos22absin1sin2=ab2abcos(12)ab2abcosCAD图4学生2:如图5,过A作AD⊥BC,垂足为D。A图5则:cADBD2bCD(aCD)ab2aCDab2abcosC学生3:如图5,AD=bsinC,CD=bcosC,∴c2=(bsinC)2+(a-bcosC)2=a2+b2-2abcosC类似地可以证明b=a+c-2accosB,c=a+b-2abcosC。【设计意图】:首先肯定学生成果,进一步的追问以上思路是否完整,可以使学生的思维更加严密。师生活动:得出了余弦定理,教师还应引导学生联想、类比、转化,思考是否还有其他方法证明余弦定理。教师:在前面学习正弦定理的证明过程种,我们用向量法比较简便地证明了正弦定理,那么在余弦定理的证明中,你会有什么想法?【设计意图】:通过类比、联想,让学生的思维水平得到进一步锻炼和提高,体验到成功的乐趣。学生4:如图6,记ABc,CBa,CAb则cABCBCAab22(c)(ab)22ab2ab222即cab2abcosCcab2abcosCA图6【设计意图】:由向量又联想到坐标,引导学生从直角坐标中用解析法证明定理。学生7:如图7,建立直角坐标系,在△ABC中,AC=b,BC=a.且A(b,0),B(acosC,asin
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

余弦定理教学设计

文档大小:29KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用