您所在位置: 网站首页 / 函数单调性与导数教案(5篇).docx / 文档详情
函数单调性与导数教案(5篇).docx 立即下载
2025-08-26
约1.3万字
约25页
0
25KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

函数单调性与导数教案(5篇).docx

函数单调性与导数教案(5篇).docx

预览

免费试读已结束,剩余 20 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数单调性与导数教案(5篇)

第一篇:函数单调性与导数教案3.3.1函数的单调性与导数【三维目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想。情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。【教学重点难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。教学难点:探索函数的单调性与导数的关系。【教具】多媒体【教学方法】问题启发式【教学过程】一.复习回顾复习1:导数的几何意义复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)问题提出:判断y=x的单调性,如何进行?(分别用图像法,定义法完成)2那么如何判断f(x)sinxx,x0,;的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数二.新知探究探究任务一:函数单调性与其导数的关系:问题1:如图(1)表示高台跳水运动员的高度h随时间t变化的函数h(t)4.9t6.5t10的图像,图(2)表示高台跳水运动员的速度V(t)h'(t)9.8t6.5h的图像.通过观察图像,运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?此时你能发现h(t)和h'(t)这两个函数图像有什么联系吗?启发:函数h'(t)在(0,a)上是大于0,函数h(t)在(0,a)上有何特点呢?函数h'(t)在(a,b)上是小于0,那么函数h(t)在(a,b)上有何特点呢?问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?(形成初步结论,板书结论:函数的单调性与导数的关系:在某个区间(a,b)内,如果f'(x)0,那么函数yf(x)在这个区间内单调递增;如果f'(x)0,那么函数yf(x)在这个区间内单调递减.)问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?探究任务二:f'x0与函数单调性的关系:问题5:若函数fx的导数f'x0,那么fx会是一个什么函数呢?(板书:特别的,如果)f'(x)0,那么函数yf(x)在这个区间内是常值函数.问题6:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢?例1:已知某函数的导函数的下列信息:时,f'(x)0;当1x4时,f'(x)0;当x4,或x1时,f'(x)0.试画出函数fx图像的大致形状.当x4,或x1跟踪练习1、设yf(x)是函数yf(x)的导数,yf(x)的图象如图所示,则yf(x)的图象最有可能是()问题7:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函数的单调区间呢?例3:判断下列函数的单调性,并求出单调区间:(1)f(x)sinxx,x0,;(2)f(x)2x33x224x1;(3)f(x)x33x;(4)f(x)x22x3;(5)f(x)=x+lnx(对于(2)让学生课后探究尝试单调性的定义法和图象法)问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)(板书“求解函数yf(x)单调区间的步骤:(1)确定函数yf(x)的定义域;(2)求导数y'f'(x);(3)解不等式f'(x)0,解集在定义域内的部分为增区间;(4)解不等式f'(x)0,解集在定义域内的部分为减区间.问题8:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢?下面我们就来看一下下面这个问题例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.分析:在导数几何意义那节我们就感受了增加与减少也由快慢之分,那么我们以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:1B,2A,3D,4C思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

函数单调性与导数教案(5篇)

文档大小:25KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用