您所在位置: 网站首页 / 利用导数证明不等式精编.docx / 文档详情
利用导数证明不等式精编.docx 立即下载
2025-08-26
约8.7千字
约15页
0
17KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

利用导数证明不等式精编.docx

利用导数证明不等式精编.docx

预览

免费试读已结束,剩余 10 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

利用导数证明不等式

第一篇:利用导数证明不等式利用导数证明不等式没分都没人答埃。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于0.这样就能说明原不等式了成立了!1.当x>1时,证明不等式x>ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)'=1-1/(1+x)=x/(x+1)>0所以f(x)在(1,+无穷大)上为增函数f(x)>f(1)=1-ln2>o所以x>ln(x+12..证明:a-a^2>0其中0F(a)=a-a^2F'(a)=1-2a当00;当1/2因此,F(a)min=F(1/2)=1/4>0即有当003.x>0,证明:不等式x-x^3/6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x>0是减函数,那么它一定因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x³/6对于函数x-x³/6-sinx当x=0时,它的值为0对它求导数得1-x²/2-cosx如果它要证x²/2+cosx-1>0x>0再次用到函数关系,令x=0时,x²/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x>0sinxx²/2-cosx-1是减函数,在0点有最大值0x²/2-cosx-10所以x-x³/6-sinx是减函数,在0点有最大值0得x-x³/6利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立令f(x)=x-x²x∈则f'(x)=1-2x当x∈时,f'(x)>0,f(x)单调递增当x∈时,f'(x)故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x²>0。i、m、n为正整数,且1第二篇:利用导数证明不等式利用导数证明不等式例1.已知x>0,求证:x>ln(1+x)分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0),这只要证明:f(x)在区间[0,)是增函数。证明:令:f(x)=x-lnx,容易看出,f(x)在区间[0,)上可导。且limf(x)0f(0)x0由f'(x)11x可得:当x(0,)时,f'(x)f(0)0x1x1即x-lnx>0,所以:x>0时,x>lnx评注:要证明一个一元函数组成的不等式成立,首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。例2:当x0,时,证明不等式sinxx成立。证明:设f(x)sinxx,则f'(x)cosx1.∵x(0,),∴f'(x)0.∴f(x)sinxx在x(0,)内单调递减,而f(0)0.∴f(x)sinxxf(0)0,故当x(0,)时,sinxx成立。点评:一般地,证明f(x)g(x),x(a,b),可以构造函数F(x)f(x)g(x),如果F'(x)0,,则F(x)在(a,b)上是减函数,同时若F(a)0,由减函数的定义可知,x(a,b)时,有F(x)0,即证明了f(x)g(x)。x练习:1.当x0时,证明不等式e1x12x成立。2证明:设fxe1xx12x,则f'xex1x.2xxx令g(x)e1x,则g'(x)e1.当x0时,g'xe10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,f(x)在即f'(x)0在0,恒成立。0,上单调递增,又f(0)0,ex1x1x20,即x0时,ex222.证明:当x1时,有ln(x1)lnxln(x2).1x12x成立。2分析只要把要证的不等式变形为ln(x1)ln(x2),然后把x相对固定看作常数,并选取辅助函lnxln(x1)数f(x)ln(x1).则只要证明f(x)在(0,)是单调减函数即可.lnx证明:作辅助函数f(x)ln(x1)(x1)lnxlnxln(x1)xlnx(x1)ln(x1)于是有f(x)x12xlnxx(x1)ln2x因为1xx1,故0lnxln(x1)所以xlnx(x1)ln(x1)(1,)因而在内恒有f'(x)0,所以f(x)在区间(1,)内严格递减.又因为1x1x,可知f(x)f(
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

利用导数证明不等式精编

文档大小:17KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用