您所在位置: 网站首页 / 怎么证明余弦定理.docx / 文档详情
怎么证明余弦定理.docx 立即下载
2025-08-27
约7.4千字
约12页
0
14KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

怎么证明余弦定理.docx

怎么证明余弦定理.docx

预览

免费试读已结束,剩余 7 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

怎么证明余弦定理

第一篇:怎么证明余弦定理怎么证明余弦定理证明余弦定理:因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab2在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c勾股定理可知:AC²=AD²+DC²b²=(sinB*c)²+(a-cosB*c)²b²=sin²B*c²+a²+cos²B*c²-2ac*cosBb²=(sin²B+cos²B)*c²-2ac*cosB+a²b²=c²+a²-2ac*cosB所以,cosB=(c²+a²-b²)/2ac2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:mb=(1/2)mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)=(1/2)√(4c^2+a^2-4ac*cosB)由b^2=a^2+c^2-2ac*cosB得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:ma=(1/2)√=(1/2)√(2b^2+2c^2-a^2)同理可得:mb=mc=ma=√(c^2+(a/2)^2-ac*cosB)=(1/2)√(4c^2+a^2-4ac*cosB)由b^2=a^2+c^2-2ac*cosB得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:ma=(1/2)√=(1/2)√(2b^2+2c^2-a^2)证毕。第二篇:余弦定理证明余弦定理证明在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c勾股定理可知:AC²=AD²+DC²b²=(sinB*c)²+(a-cosB*c)²b²=sin²B*c²+a²+cos²B*c²-2ac*cosBb²=(sin²B+cos²B)*c²-2ac*cosB+a²b²=c²+a²-2ac*cosB所以,cosB=(c²+a²-b²)/2ac2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asi
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

怎么证明余弦定理

文档大小:14KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用