您所在位置: 网站首页 / 我们身边的概率和博弈问题.docx / 文档详情
我们身边的概率和博弈问题.docx 立即下载
2025-08-27
约1.6万字
约27页
0
31KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

我们身边的概率和博弈问题.docx

我们身边的概率和博弈问题.docx

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

我们身边的概率和博弈问题

第一篇:我们身边的概率和博弈问题在很多人眼里,数学是书本上的知识,是研究者的领域,而事实上,在我们的生活中,数学无处不在,其中具有典型意义的就是概率和博弈问题。只要留心,生活处处存在概率和博弈,了解并学会如何运用它们,会使我们解决生活中的问题变得简单化,往往让我们意想不到。中世纪欧洲盛行掷骰子赌博,其中提出许多很有趣的概率问题。当时法国的帕斯卡、费尔马和旅居巴黎的荷兰数学家惠更斯都对此类问题感兴趣,他们用组合数学研究了许多与掷骰子有关的概率计算问题。自20世纪30年代柯尔莫哥洛夫提出概率公理化以来,概率论迅速发展成为数学领域里一个相对较新的和充满活力的学科,并且在工程、国防、生物、经济和金融等领域得到了广泛的应用,而且与人们的生活有着密切的联系。拉普拉斯有一句名言:“生活中最重要的问题,绝大部分其实只是概率问题”。在遵守一定“游戏规则”的前提下,具有竞争或对抗性的行为称为“博弈”,比如打牌、下棋、企业经营或国际间的政治和军事谈判等。博弈的思想历史渊源悠久。《史记》中就记载了战国时期“田忌赛马”的故事,这是运用(http://)两种因数是否具有某种相关性而进行分组研究时就发现了这种现象:在分组比较中都占优势的一方,在总评中反而是劣势。直到1951年英国统计学家辛普森在他发表的论文中才正式对这一现象给予理论解释。后人就把这一现象称为“辛普森悖论”。四.如何评估疾病诊断的确诊率?假想有一种通过检验胃液来诊断胃癌的方法,胃癌患者检验结果为阳性的概率为99.9%,非胃癌患者检验结果为阳性(“假阳性”)的概率为0.1%。假定某地区胃癌患病率为0.01%。问题是:(1)检验结果为阳性者确实患胃癌的概率(即确诊率)是多大?(2)如果“假阳性”的概率降为0.01%、0.001%和0,确诊率分别上升为多少?(3)用重复检验方法能提高确诊率吗?早在18世纪中叶,英国学者贝叶斯(Bayes)就提出“由结果推测原因”的概率公式(贝叶斯公式)。我们用“+”表示阳性,用H、F分别表示胃癌患者和非胃癌患者,则由贝叶斯公式,确诊率为:P(H|+)=P(+|H)P(H)/P(+)。问题(1)的答案是:确诊率为1/11;问题(2)的答案是:如果“假阳性”的概率降为0.01%、0.001%和0,确诊率分别上升为50%、90.9%和100%;问题(3)的答案是:有一定的提高,但大幅度提高的可能性很小。原因是“假阳性”主要是检验技术本身问题造成的,重复检验的结果相关性很大,不能按独立事件对待。五.在猜奖游戏中改猜是否增大中奖概率?这一问题出自美国的电视游戏节目’Let’smakeadeal’。问题的名字来自该节目的主持人蒙提·霍尔。上世纪90年代曾在美国引起广泛和热烈的讨论。假定在台上有三扇关闭的门,其中一扇门后面有一辆汽车,另外两扇门后面各有一只山羊。主持人是知道哪扇门后面有汽车的。当竞猜者选定了一扇门但尚未开启它的时候,节目主持人去开启剩下两扇门中的一扇,露出的是山羊。主持人会问参赛者要不要改猜另一扇未开启的门。问题是:改猜另一扇未开启的门是否比不改猜赢得汽车的概率要大?答案是:改猜能增大赢得汽车的概率,从原来的1/3增大为2/3。也许有人对此答案提出质疑,认为改猜和不改猜赢得汽车的概率都是1/2。为消除这一质疑,不妨考虑有10扇门的情形,其中一扇门后面有一辆汽车,另外9扇门后面各有一只山羊。当竞猜者猜了一扇门但尚未开启时,主持人去开启剩下9扇门中的8扇,露出的全是山羊。显然:原先猜的那扇门后面有一辆汽车的概率只是1/10,这时改猜另一扇未开启的门赢得汽车的概率是9/10。六.如何设计对敏感性问题的社会调查?设想要对研究生论文抄袭现象进行社会调查。如果直接就此问题进行问卷调查,就是说要你直说你是否抄袭,即使这样的调查是无记名的,也会使被调查者感到尴尬。设计如下方案可使被调查者愿意做出真实的回答:在一个箱子里放进1个红球和1个白球。被调查者在摸到球后记住颜色并立刻将球放回,然后根据球的颜色是红和白分别回答如下问题:你的生日是否在7月1日以前?你做论文时是否有过抄袭行为?回答时只要在一张预备好的白纸上打√或打×,分别表示是或否。假定被调查者有150人,统计出共有60个√。问题是:有抄袭行为的比率大概是多少?已知:P(红)=0.5,P(√|红)=0.5,P(√)=0.4,求条件概率P(√|白)=?用贝叶斯公式算出的答案是30%。七.为什么企业间的“价格联盟”往往是短命的?在博弈论里有一个著名的“囚徒困境”问题:两个共同犯案囚徒不坦白也不揭发对方可能得到最轻的处罚(判刑1年);如果一方坦白并揭发对方,另一方不坦白,坦白方判刑2年,不坦白方判刑10年;如果两方都坦白和揭发对方,各判刑5年。但一方总会怀疑另一方为了减刑而出卖自己,如果自己不坦白就会受
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

我们身边的概率和博弈问题

文档大小:31KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用