您所在位置: 网站首页 / 数列求和公式证明.docx / 文档详情
数列求和公式证明.docx 立即下载
2025-08-27
约1.3万字
约21页
0
21KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数列求和公式证明.docx

数列求和公式证明.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数列求和公式证明

第一篇:数列求和公式证明1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边数学归纳法可以证也可以如下做比较有技巧性n^2=n(n+1)-n1^2+2^2+3^2+......+n^2=1*2-1+2*3-2+....+n(n+1)-n=1*2+2*3+...+n(n+1)-(1+2+...+n)由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3所以1*2+2*3+...+n(n+1)=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3[前后消项]=[n(n+1)(n+2)]/3所以1^2+2^2+3^2+......+n^2=[n(n+1)(n+2)]/3-[n(n+1)]/2=n(n+1)[(n+2)/3-1/2]=n(n+1)[(2n+1)/6]=n(n+1)(2n+1)/62)1×2+2×3+3×4+...+n×(n+1)=?设n为奇数,1*2+2*3+3*4+...+n(n+1)==(1*2+2*3)+(3*4+4*5)+...+n(n+1)=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)=n(n+1)(n+2)/3设n为偶数,请你自己证明一下!所以,1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3设an=n×(n+1)=n^2+nSn=1×2+2×3+3×4+...+n×(n+1)=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)=n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)(n+2)/3数列求和的几种方法1.公式法:等差数列求和公式:Sn=n(a1+an)/2=na1+n(n-1)d/2等比数列求和公式:Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)2.错位相减法适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{an}、{bn}分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbnTn=a1b1+a2b2+a3b3+a4b4....+anbnqTn=a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)Tn-qTn=a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)3.倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)Sn=a1+a2+a3+......+anSn=an+a(n-1)+a(n-3)......+a1上下相加得到2Sn即Sn=(a1+an)n/24.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-15.裂项法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:(1)1/n(n+1)=1/n-1/(n+1)(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n![例]求数列an=1/n(n+1)的前n项和.解:an=1/n(n+1)=1/n-1/(n+1)(裂项)则Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)=1-1/(n+1)=n/(n+1)小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意:余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。6.数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。例:求证:1×2×3×4+2×3×4×5
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数列求和公式证明

文档大小:21KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用