您所在位置: 网站首页 / 数学史解析几何部分教案.docx / 文档详情
数学史解析几何部分教案.docx 立即下载
2025-08-27
约6.2万字
约110页
0
71KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数学史解析几何部分教案.docx

数学史解析几何部分教案.docx

预览

免费试读已结束,剩余 105 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学史解析几何部分教案

第一篇:数学史解析几何部分教案教案教学内容本节课主要内容是研究函数与曲线关联、解析几何的起源以及笛卡尔的生平和笛卡尔方法论.教学目标1.知识与技能通过查阅资料,了解函数与曲线的关联、解析几何的起源以及笛卡尔的生平和笛卡尔方法论,并结合初高中数学教材发现笛卡尔的方法论与当前数学教学的联系。2.过程与方法经历资料查阅的过程,探索函数与曲线之间的关联,了解解析几何的起源和笛卡尔的生平,掌握笛卡尔方法论与目前数学教学中有联系的部分,提高资料收集、整理、合情推理的能力.3.情感、态度与价值观培养资料的查询与组织的意识,激发学生求知欲,感悟解析几何博大精深的内容.重、难点与关键1.重点:函数与曲线之间的关联、笛卡尔方法论以及笛卡尔方法论与当前的数学教学的联系.2.难点:各种资料的查阅组织,对函数与图像的认识以及对笛卡尔方法论的理解.3.关键:笛卡尔把运动和辩证法引进了数学,把对立着的两个对象“数”和“形”统一起来,建立了曲线和函数的对应关系.教具准备投影仪、幻灯片、黑板.教学方法采用“问题探究”的教学方法,让学生在互动交流中领会知识.教学过程一、回顾交流,迁移拓展【问题探究】1:2:他们分别是什么?有什么联系?【教师活动】操作投影仪,提出“问题探究”,组织学生讨论.【学生活动】小组讨论,发表意见:“1为函数式,2为曲线,他们之间可以相互表示.”【媒体使用】投影显示“问题探究”.【教学形式】分四人小组,合作、讨论.第二篇:《解析几何》教案《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c„„标记向量,而用希腊字母λ、μ、ν„„标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2向量的加法一向量的加法:定义1设、为,以与与为邻边作一平行四边形,取对角线向量,记,如图1-1,称之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量若与与向量在同一直线上,那么,规定它们的和是这样一个向量:的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1向量的加法满足下面的运算律:1、交换律,(1.2-2)2、结合律.(1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律.自空间任一点O开始依次作所以由定理1知,对三向量.二
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数学史解析几何部分教案

文档大小:71KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用