




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数学变式思想 第一篇:数学变式思想在数学教学的过程当中,我们教师认真备课,用心辅导学生做练习,一直以“熟能生巧”来告诫学生,但事实给我们以极大的反差:许多我们认为让学生练熟的知识,在一次次考试中,只要对问题的背景或数量关系稍作演变,有的学生就无所适从。许多实例也表明,大量单一的、重复的机械性练习,达到的不是“生巧”,而是“生厌”,它不仅对学生知识与技能的掌握无所裨益,而且还会使学生逐步丧失学习数学的兴趣,这正是“题海战术”的最大弊端。许多教师曾意识到此类问题,因此在课堂教学中频频提醒学生解题学习要触类旁通,懂一题会解一片。问题变式不是为了“变式”而变式,而是要根据教学需要,遵循学生的认知规律而设计数学变式。其目的是通过变式训练,使学生在理解知识的基础上,把学到的知识转化为能力,形成技能技巧,完成“应用—理解—形成技能—培养能力”的认知过程。因此,数学变式设计要巧,要有一定的艺术性,要正确把握变式的“度”。一般地,设计数学变式,应注意以下几个问题:1、差异性。设计数学问题变式,要强调一个“变”字,避免简单的重复。变式题组的题目之间要有明显的差异。对每道题,要使学生既感到熟悉,又感到新鲜。从心理学角度看,新鲜的题目给学生的刺激性强,学生的神经兴奋度高,做题时注意力集中,积极性大,思维敏捷,使训练达到较好的效果。因此,设计数学变式,要努力做到变中求“活”,变中求“新”,变中求“异”,变中求“广”。2、层次性。所谓的问题变式要有一定的难度,才能调动学生积极思考。但是,变式要由易到难,层层递进,让问题处于学生思维水平的最近发展区,充分激发学生的好奇心和求知欲。要让学生经过思考,能够跨过一个个“门坎”,既起到训练的作用,又可以培养学生的思维能力,发展学生的智力。3、开阔性。一幅好画,境界开阔,就会令人回味无穷。同样,设计数学问题变式,一定要内涵丰富,境界开阔,给学生留下充足的思维空间,让学生感到内容充实。因此,所选范例必须具有典型性:一要注意知识的横向联系;二要具有延伸性,可进行一题多变;三要注意思维的创造性、深刻性。4、灵活性。根据教学内容和学生的实际情况,数学问题变式训练的方式要灵活多样,力求使学生独立练习和教师启发引导下的半独立练习相结合。同时,根据数学内容,有时可分散训练,有时可集中训练,有时一个题目的变式可分几次完成,充分展现知识螺旋上升的方式。这种灵活的训练方式,不仅可以提高学生的兴趣,集中学生的注意力,而且可以使学生的多种感官参与学习,提高大脑和神经的兴奋度,达到最佳的训练效果。据学习目标和学生交流中所反馈的信息,教师精心选编题目,并通过变式得到变式训练题组,让学生在解答、变式、探索及题目编制过程中,深化对定理、公式的理解和运用,促进认知结构的内化过程。在变式训练环节中,教师活动体现在:(1)设计针对性强又能进行变式探索的题目。题目设计要注意定理、公式的正用、逆用和变式应用。(2)引导学生解答题目并进行题目变式。(3)引导学生应用定理、公式及其变式进行“编题”训练。(4)适时进行定理、公式的应用要点和技巧的点拨和鼓励性评价。学生活动体现在:(1)灵活应用定理、公式及其变式解决问题,注重探求多解。(2)主动探索题目变式,得到变式题组,扩大解题成果。(3)主动参与编题,进行创新活动,探索问题的源头。(4)在解决问题的过程中,注意总结定理、公式的应用要点和技巧。第二篇:数学变式教学(讲座)数学变式训练对学生的长远影响教师:李芳芳时间过得真快,转眼一学期又要结束了。这学期我们九年级数学重点是通过变式练习的教学提高课堂教学质量。通过听三位教师的公开课及自已上公开课,从理论到实践再到理论,经过这样的过程,感触很大也很受用。最值得学习的是培养了学生的各种基本知识和基本技能。下面我从学生的收获谈一谈自己的看法。一、变式训练课激活了学生的思维。变式训练激活学生的思维,尤其是发散思维的能力、化归、迁移思维能力和思维的灵活性。运用变式训练可以提高数学题目的利用率,抽高数学的有效性,培养学生的综合思维能力。比如邹琪教师的这节课重点是讲解绝对值的性质运用,通过变式抓住绝对值班的本质规律,通过训练,主要通过呈现性质的外延和一些易错难辨的分类考虑情况,让学生加深理解很好的掌握绝对值。姚老师的这节几何课把各种全等变形通过具体的变换演示让学生思维一下活跃,学生能很快建立空间形象概念,通过变式帮助学生多方位灵活理解,再复杂的图形都是是由几种基本全等变换得到的,可以从复杂的图中抽象出本质的思维方法。另外,姚老师在处理质疑导学中的例题时,化整为零各个击破,用一个二次函数综合问题激活学生思维的深度和广度,一个问题比一个问题难并且综合了轴对称及两点之间线段更短等知识,尤其是面积的问题,一题多解培养了学生变通和举一反三的能力,收到了少而胜多的效果。二、激活了学生的兴趣

一吃****春晓
实名认证
内容提供者


最近下载