数学建模思想融入应用型本科高校工科数学教学的探讨.docx 立即下载
2025-08-27
约1.6万字
约27页
0
29KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数学建模思想融入应用型本科高校工科数学教学的探讨.docx

数学建模思想融入应用型本科高校工科数学教学的探讨.docx

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学建模思想融入应用型本科高校工科数学教学的探讨

第一篇:数学建模思想融入应用型本科高校工科数学教学的探讨数学建模思想融入应用型本科高校工科数学教学的探讨摘要根据应用型本科高校的人才培养目标,分析了数学建模思想融入工科数学教学的必要性,探讨了数学建模思想融入工科数学教学的方法,并提出了一些建议。关键词数学建模工科数学教学中图分类号:G424文献标识码:ADOI:10.16400/j.cnki.kjdkx.2017.01.048数学建模思想融入工科数学教学的必要性传统的工科数学最主要的课程是高等数学、线性代数和概率论与数理统计。这三门课程都存在着重理论轻应用的问题,过于追求体系的完整和逻辑的严谨性,忽略了数学从何处来、向何处去这个问题,将数学构建成一个封闭的王国。其结果是很多学生被数学中大量的概念和公式困扰,失去了学习的兴趣,更谈不上应用及创新能力的培养。这种模式显然已不能适应应用型本科高校对技术应用型人才培养目标的要求。如何使学生既能掌握数学知识,又能应用数学知识解决实际问题是广大数学教育者关心的一个问题。中国科学院院士李大潜曾提出将数学建模思想融入数学类主干课程的建议。将数学建模思想融入到数学教学中,通过数学建模的方法对实际问题的处理,能让学生感受到数学不仅能传播知识,还能应用到实际问题中,改变传统数学教学中只注重定义、定理、证明和计算,不注重实际应用的局面,从而使学生对数学有了更全面的理解和认识,变被动学习为主动参与和积极思考,调动了学生学习的积极性,培养了学生运用数学思想和方法解决实际问题的能力,也为后续的专业课学习甚至是将来在社会的工作打下基础。数学建模培训是实现应用型人才培养目标的一条有效途径。目前国内很多高校非常重视数学建模,不仅开设了数学模型、数学实验等课程,还鼓励学生积极参加全国大学生数学建模竞赛,且规模逐年扩大,其影响力正日益提高。数学建模能提高大学生的数学素养,锻炼大学生应用数学知识和方法解决实际问题的能力。但是限于竞赛规模和参赛学生的水平要求,受益的只是少部分学生。要想全面提高应用型本科高校大学生的素质,培养具有创新精神,适合社会发展需求的应用型人才,就不能将数学建模与大学数学课程孤立开来,而应该以大学数学课程作为载体,将数学建模思想融入到大学数学课程中去。通过多年的教学实践来看,笔者认为在数学课程教学过程中引入数学建模思想是非常有必要的,既是现代数学发展的要求,也是新世纪人才培养的要求。数学建模思想融入工科数学教学的方法探讨建模思想融入到工科数学教学中是一个缓慢的过程,要从多方面进行循序渐进的渗透。比如可在概念讲授中渗透、在定理的应用中渗透、在习题作业中渗透等多方面进行。由于工科数学教学内容多、时间较紧,在教学中教师应该注意,数学建模思想的融入要把握好时机,要集中精力针对课程的核心概念和重要内容,使数学建模内容与教材内容有机衔接,不能占用太多的时间,影响正常的教学计划。数学建模的融入仅仅是一种辅助的教学手段,教学过程中不能过于追求数学建模体系的完整,在教学过程中做到数学建模思想的渗透即可,使数学建模成为工科数学的有益补充,又不喧宾夺主,做到主次分明,相得益彰。下面从几个方面谈谈如何将数学建模思想融入工科数学教学。2.1在概念讲授中融入数学建模思想事实上,大学数学课程中很多概念的引入都是从实际问题中抽象出来的数学模型,在讲授这些概念时可以还原到实际问题,由实际应用自然而然地引出概念。例如,在高等数学中,在讲导数定义的时候,可以引入求变速直线运动物体的瞬时速度的问题,教师引导学生进行思考:当时间变化很小时,变速直线运动可以近似当成匀速直线运动来看待。假设物体在时刻的位置为(),当经过很短的时间△后,物体的位置变为(+△),于是物体从到+△时间内的平均速度为V=。当△很小时,V可以近似看成物体在时刻的瞬时速度,且△越小V就越接近时刻的瞬时速度V。由极限定义可得时刻的瞬时速度V=。同样的方法,还可以用来求曲线在一点的切线斜率、非稳定电流的电流强度等等。通过比较分析,最后总结得到导数的定义,不仅顺理成章的介绍了概念,而且从多个角度加深了学生对导数本质的理解。再比如,在概率论与数理统计中,在讲条件概率的定义之前,可先引入这样一个实际的例子:考虑有两个孩子的家庭,假定男女出生率一样,则两个孩子(依大小排列)的性别分别为(男,男),(男,女),(女,男),(女,女)的可能性是一样的。若记A={随机抽取一个这样的家庭有一男一女},则P(A)=,但如果我们事先知道这个家庭至少有一个女孩,则上述事件的概率为2/3。同样的事件,在两种不同的情况下得出的概率却不一样,这很容易引起学生的兴趣。通过简单的分析,找出其中的关系,很自然地引入了条件概率的定义,同时学生对这个新概念有了更深刻的理解,也?他们知道数学源于生活又高于生活。以
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数学建模思想融入应用型本科高校工科数学教学的探讨

文档大小:29KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用