您所在位置: 网站首页 / 数学校本课程教案(精选5篇).docx / 文档详情
数学校本课程教案(精选5篇).docx 立即下载
2025-08-27
约3.2万字
约58页
0
52KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数学校本课程教案(精选5篇).docx

数学校本课程教案(精选5篇).docx

预览

免费试读已结束,剩余 53 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学校本课程教案(精选5篇)

第一篇:数学校本课程教案生活中的立体几何教案学习目标:1、在所学立体几何的基础上研究两个相连立方体的展开图。2、通过这节学习,培养学生动手操作能力,以及学生的空间想象能力。重点:两个相连立方体的展开图。难点:其他几何体的展开图。学习过程:1、折叠问题巧解决:图1一名纸盒制造商要求设计师设计一种适当的纸板,使得该纸板折叠以后可隔成两个立方体,且这两个正方体上方各有一个盖子。有很多种设计可符合此要求,但是最后制造商决定采用如上图所示的“十”字形纸板。根据设计师的说法,只要将纸板裁两刀,就可折叠出所需要的盒子,到底该从何着手?解答与分析:顺着图中的粗线将纸盒剪开,再沿着虚线处将A与B两块粘合,形成盒子的中央分隔部位,并使两片盖子可以以此为底轴任意开关。接下来便可很轻易地折出题目所要求的盒子。解题的关键在于两片盖子的底轴位于同一处。当这个关键问题解决之后,要找出符合要求的设计并不难。在大部分的设计中,此答案是最理想的。图22、辛赛的奥妙:1982年,有一种称为“辛赛的奥妙”(ShinseiMystery)的数学玩具上市,它是由两个相同的部分组成的,每一部分又是由8个互相连接的多面体构成。它可以组合成许多奇妙的形状,其中包括立方体和12个顶点的星状体。这个模型的基础是半个立方体(如图1),可以把它看成是3个角锥体(6个这样的角锥体构成立方体),向内折使其顶点会合于立方体的中心。这个半立方体的展开图见图2。展开图中有一个三角形的面出现两次,可以粘合在一起,以增加强度。“辛赛的奥妙”每一半都有8个这样的半立方体,彼此以巧妙的方式连接在一起。它可以叠成如图3所示有12个顶点的星状体。为了说明连接的方法,我们可以把星状体水平分成两半,再把相同的两半并排在一起,用比较平面的方式表现。图4图4是由上方俯视的示意图,A、B、C对应于立方体展开图(图2)的标示。将8个半立方体的底面DEF按图所示置于平面上,并用胶带纸粘贴。现在你也拥有一个奇妙的模型了,任何把玩它的人都会觉得趣味盎然。用不同颜色的纸板再做一个相同的模型,你会发现它们可以组合在一起,而且可以使其中一个消失在另一个之中。三维立体问题:我们通常都可以从二维的图画中看出所要表现的三维物体,识图与绘图的训练,可以培养我们的空间观念。然而,就像这里所示的一些图画,二维的图画也可以在视觉上创造出不可能的事物。在第一张图中,到底是2根还是3根木栓?阶梯是否可以自己相连?你是否能用3根木条做出图上的三角形?关于视觉的认知,可能心理学家要比数学家研究得更多一些,但数学家也经常使用二维图形作为思考空间问题的参考,因此必须对二维图形的缺点有所了解。荷兰艺术家埃舍尔(M.C.Escher)在绘画上运用视错觉的原理,创造出许多不可能的世界。你可以参阅《埃舍尔绘画作品》(TheGraphicWorkofM.C.Escher)一书中的一些图画。作业:注意并收集那些会欺骗你眼睛的图画。第二篇:数学史话校本课程教案数学史话教案长乐二中郑艳阳陈云珍第1章数学史话概述课时:2课时教学目标:了解数学发展的背景,理解重要数学事件对数学尿的意义。教学方式:阅读史料、讨论思考、感悟总结主题:数学发展的显著变化知识理解:数学是研究现实世界中数量关系和空间形式的科学。简单地说,就是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数学校本课程教案(精选5篇)

文档大小:52KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用