




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数学概念(五篇) 第一篇:数学概念奇数、偶数、质数、合数的概念:在自然数中,我们将那些可以被2整除的数叫作偶数,如2、4、6、8、10、...等,剩下的那些自然数就叫作奇数,如1、3、5、7、9、...等。这样,所有的自然数就被分成了偶数和奇数两大类。另一方面,除去1以外,有的数除了1和它本身以外,不能再被别的整数整除,如2、3、5、7、11、13、17、...等,这种数称作素数(也称质数)。质数中,除了2之外,其它的质数都是奇数。有的数除了1和它本身以外,还能被别的整数整除,这种数就叫合数,如4、6、8、9、10、12、14、...等,就是合数。奇数中有合数(例如9、15、21等)。偶数中除了2之外,其他的偶数都是合数。1这个数比较特殊,它既不算质数也不算合数。这样,所有的自然数就又被分为0、1和素数、合数四类。真分数、假分数、带分数:真分数一般是在正数的范围内讨论的。值小于1的分数,即分子小于分母(二者都是正整数)的分数称为真分数,但分数值等于1不算(那属于假分数)。有时也有“负真分数”的提法,指绝对值小于1的负分数。没有最大的真分数。注意:分子为0时候不是真分数;例如:0/6,虽然0小于6,但0/6不是真分数。原因是“将单位“1”平均分成若干份,表示这样的一份或几份的数叫分数”。真分数的例子:2/5(五分之二),分子必须要小于分母,才可称为真分数。假分数和真分数相对,通常也是在正数的范围内讨论的。值大于或等于1的分数,即分子大于或等于分母的分数称假分数。如果在整个有理数范围内讨论,则绝对值大于或等于1的分数的为假分数。假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。p.s.带分数就是将一个分数写成整数部分+真分数部分,是分数的一类。带分数化假分数:分母不变,分子为整数部分乘以分母的积再加上原分子的和。假分数化带分数:分母不变,整数部分为原分子除以分母的商,分子则为原分子除以分母的余数。带分数不能化成真分数。在代数学中,不用带分数,只用假分数。第二篇:数学概念教学策略数学概念教学策略长春市九十中学西校郭天景数学概念的教学是数学教学中的一个重要环节,它关系到进一步学习的成败,因为数学概念是数学知识系统中的重要组成部分,正确理解数学概念,是正确归纳、推理和判断的充要条件、学生正确理解概念,掌握概念,才能在推理、判断中得出正确结论。所以,加强数学概念教学是提高数学教学质量的有效手段。我在数学概念的教学采用以下策略:一、设置情境,引入概念数学教学中,概念很多,如数的概念、形的概念、运算的概念等等。这些概念的形成实质上可以概括为两个阶段:从完整的表象概括为抽象的规定;使抽象的规定在思维过程中导致具体的再现。教师在教学中既要使学生触感完整的表象,还要从中抽象出概念的内涵,从而进一步发展学生的思维能力,培养学生从具体到抽象的思维方法。所以引入概念的教法大致有两种途径:1.利用学生在日常生活中熟悉的具体事例,设置情景,形象的引入概念。如直线、射线、线段、三角形、圆等概念。2.在旧概念的基础上引入新概念。如在等式的基础上引入方程,在一元一次方程基础上引入一元一次不等式,在平行四边形的基础上引入矩形、菱形、正方形等。二、分析概念,了解本质数学概念大多数是通过描述定义给出它的确切含义,它属于理性认识,来源于感性认识。对于这类概念要抓住它的本质属性,必须运用比较、分析、综合、抽象、概括等思维方式,对定义的基本点“再加工”,重新提炼,排除其非本质属性,使学生对概念有全面、深刻的理解,上升到理性认识,从而正确运用概念。例如互补角概念教学,应启发学生归纳其本质属性:1.必须具备两个角之和为180€埃桓鼋俏?80€盎蛉鼋侵臀?80€岸疾皇腔ゲ?角,互补角只就两个角而言。2.互补的两个角只是数量上的关系,这与两个角的位置无关。三、巩固概念,应用提高正确的概念形成之后,往往记忆不牢,理解不透。这就要求采取措施,有计划、有目的地复习巩固,在应用中加深理解和提高认识。1.利用新概念复习旧概念。如在初中几何第二册四边形这一章中平行四边形具有四边形共有特性,矩形具有平行边形共有特性,菱形、正方形具有平行四边形的共有特性,正方形具有矩形、菱形的共有特性。这样链锁式概念教学,既掌握了新概念又加深了对旧概念的理解。2.加强预习。在课堂教学中优先考虑概念题的安排,精讲精练,合理安排,选题时注意题目的典型性、多样性、综合性和针对性,做到相关概念结合练,易混概念对比练,重要概念反复练。3.对学生在练习中,课外作业中出现的错误,要紧抓不放,及时纠正。既使其它方面的错误也要找出有关概念方面的错误,予以分析纠正。4.每一单元结束后,要进行概念总结。总结后,要特注意把同类概念区别分析清楚,把不同类概念的联系分析透彻。四、概念的

永梅****33
实名认证
内容提供者


最近下载