




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
概率教案 第一篇:概率教案一、授课题目1.4等可能概型(古典概型)二、目的要求教学目的:(1)理解基本事件、等可能事件等概念;(2)会用枚举法求解简单的古典概型问题;教学要求:要求学生熟练掌握等可能概率,会计算古典概率三、重点、难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。四、授课内容等可能概型1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的;具有以上两个特点的试验是大量存在的,这种试验称为等可能概型(古典概型)。计算公式:若事件A包含k个基本事件,即A={ei1}∪{ei2}∪„∪{eik},这里i1,i2,„ik是1,2,„,n中某k个不同的数,则有PAknA包含的基本事件数S包含的基本事件数例题1:将一枚硬币抛掷3次。(1)设事件A1为“恰有一次出现正面”,求P(A1)(2)事件A2为“至少有一次出现正面”,求P(A2)。解:(1)我们考虑样本空间:S2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.而A1={HTT,THT,TTH}.S2中包含有限个元素,且由对称性知每个基本事件发生的可能性相同,故由古典概率的计算公式可得P(A1)=(2)由于A2={TTT},于是P(A2)=1-P(A2)=1-=当样本空间的元素较多时,我们一般不再将S中的元素一一列出,而只需分别求出S中与A中包含的元素的个数(即基本事件的个数),再由公式求出A的概率。例题2:一个口袋装有6只球,其中4只白球,2只红球,从袋中取球两次,每次随机的取一只,第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球,这种取球方式叫做放回抽样。试分别就上面的情况求(1)取到的两只球都是白球的概率;(2)取到的两只球颜色相同的概率;(3)取到的两只球中至少有一只是白球的概率。解:放回抽样的情况。以A、B、C分别表示事件“取到的两只球都是白球”,“取到的两只球都是红球”,“取到的的两只球中至少有一只是白球”。易知“取到两只颜色相同的球”这一事件即时A∪B,而C=B.在袋中依次取两只球,每一种取法为一个基本事件,显然此时样本空间中仅包含有限个元素,且由对称性知每个基本事件发生的可能性相同,由此可计算出事件的概率。每一次从袋中取球有6只球可供抽取,第二次也有6只球可供抽取。由组合法的乘法原理,共有6×6种取法,即样本空间中元素总数为6×6。对于事件A而言,由于第一次有4只白球可供抽取,第二次也有4只白球可供抽取,由乘法原理共有4×4个元素。同理B中包含2×2个元素。于是444P(A)==669P(B)=221=669由于AB=,得P(A∪B)=P(A)+P(B)=P(C)=P(B)=1-P(B)=9例题3:将一个骰子先后抛掷2次,观察向上的点数。问:⑴两数之和是3的倍数的结果有多少种?两数之和是3的倍数的概率是多少?⑵两数之和不低于10的结果有多少种?两数之和不低于10的的概率是多少?分析:建立模型,画出可能出现结果的点数和表解:由表可知,等可能的基本事件的总数是36种(1)设“两次向上点数之和是3的倍数”为事件A,事件A的结果有12种,故121P(A)363(2)设“两次向上点数之和不低于10”为事件B,事件B的结果有6种,故61P(B)366思考:对于此题,我们还能得到哪些相关结论呢?变式一:总数之和是质数的概率是多少?变式二:点数之和是多少时,概率最大且概率是多少?变式三:如果抛掷三次,问抛掷三次的点数都是偶数的概率,以及抛掷三次得点数之和等于16的概率分别是多少?例题4:一个口袋内装有大小相同的5个红球和3个黄球,从中一次摸出两个球(1)共有多少个基本事件?(2)求摸出的两个球都是红球的概率;(3)求摸出的两个球都是黄球的概率;(4)求摸出的两个球一红一黄的概率。分析:可用枚举法找出所有的等可能基本事件.解:(1)分别对红球编号为1、2、3、4、5号,对黄球编号6、7、8号,从中任取两球,有如下等可能基本事件,枚举如(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)(3,4)、(3,5)、(3,6)、(3,7)、(3,8)(4,5)、(4,6)、(4,7)、(4,8)(5,6)、(5,7)、(5,8)(6,7)、(6,8)(7,8)共有28个等

一条****然后
实名认证
内容提供者


最近下载