您所在位置: 网站首页 / 正弦定理的证明.docx / 文档详情
正弦定理的证明.docx 立即下载
2025-08-27
约9.3千字
约17页
0
19KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

正弦定理的证明.docx

正弦定理的证明.docx

预览

免费试读已结束,剩余 12 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

正弦定理的证明

第一篇:正弦定理的证明正弦定理的证明(方法一)可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则asinbsin同理可得从而asinAcsinCbsinBbsinBcsinC思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(方法二)利用向量证明如图,在ABC中,过点A作一个单位向量j,使jAC。当BAC为钝角或直角时,同理可证上述结论。从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即asinbsincsin[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;(2)下面还介绍几种证明的方法,供感兴趣同学探索。(方法三)利用复数证明如图,如图2,建立平面直角坐标系.在复平面内,过点A作BC的平行线,过点C作AB的平行线,交于点D.asinAbsinBcsinC等价于asinAbsinB,csinCbsinB,asinAcsinC根据复数相等的定义,实部等于实部,虚部等于虚部.可以得出(方法四)利用ABC的外接圆证明Ⅰ如图,O是ABC的外接圆,设半径为R,分别连结OA、OB、OC,过点O作ODBC,垂足为D。证明:(方法五)利用ABC的外接圆证明ⅡO是ABC的外接圆,如图,设半径为R,连结BO并延长,交O于点D,连结AD。证明:(方法六)利用ABC的高线证明如图,在ABC中,过点B作BDAC,垂足为D证明:(方法七)利用两角和的正弦公式证明如图,在ABC中,过点B作BDAC,垂足为D此题还能这样入手:以下过程同上。第二篇:正弦定理证明正弦定理证明1.三角形的正弦定理证明:步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2Ra/SinA=BC/SinD=BD=2R类似可证其余两个等式。2.三角形的余弦定理证明:平面几何证法:在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac3在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^2=a^2+c^2-2ac*cosB下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a由勾股定理得:c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2所以c^2=(AD)^2-(CD)^2+b^2=(a-CD)^2-(CD)^2+b^2=a^2-2a*CD+(CD)^2-(CD)^2+b^2=a^2+b^2-2a*CD因为cosC=CD/b所以CD=b*cosC所以c^2=a^2+b^2-2ab*cosC题目中^2表示平方。2谈正、余弦定理的多种证法聊城二中魏清泉正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)==;(2)(余弦定理)c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA.一、正弦定理的证明证法一:如图1,设AD、BE、CF分
查看更多
fu****级甜
实名认证
内容提供者
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

正弦定理的证明

文档大小:19KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用