您所在位置: 网站首页 / 正弦定理,余弦的多种证明.docx / 文档详情
正弦定理,余弦的多种证明.docx 立即下载
2025-08-27
约1.2万字
约20页
0
20KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

正弦定理,余弦的多种证明.docx

正弦定理,余弦的多种证明.docx

预览

免费试读已结束,剩余 15 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

正弦定理,余弦的多种证明

第一篇:正弦定理,余弦的多种证明正弦(余弦)定理的另类证明课本利用向量法证明正弦定理,本文来介绍的另外两种证法.正弦定理:在一个三角形中,各边和它所对角的正弦比相等,即a=bsinAsinB=csinC.证法1:(等积法)在任意斜三角形ABC中,S△111absinCacsinBbcsinA,222两边同除以1abc即得:a=b=c2sinAsinBsinCABC=.C点评:证法1主要利用了任意斜三角形面积可分别转化为三角形不同边与其对应高的乘积的12.此证法体现了转化与化归的思想方法.abAOBDc证法2:(外接圆法)如图1所示,设O为△ABC的外接圆的圆心,连接CO并延长交圆O于D,连接BD,则A=D,BCaa所以sinAsinDCD,即2R.同理2RsinAbsinB=2R,csinC=2R.故a=b=csinAsinBsinC=2R(R为三角形外接圆半径).点评:证法2建立了三角形中的边与对角、外接圆半径三者之间的联系,这三者知二可求一,为正弦定理增添了新内容,体现了数形结合的思想.小结:由以上证明过程,我们可以得到正弦定理的几种变形形式:1.a:b:c=sinA:sinB:sinC;2.a=2RsinA;b=2RsinB;c=2RsinC;3.sinA=2aR;sinB=2bR;sinC=2cR.(其中R为△ABC外接圆的半径)在解决三角形问题时,一定要根据问题的具体情况,恰当地选用公式.公式选择得当、方法运用对路是简化问题的必要手段.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.对于任意三角形三边为a,b,c三角为A,B,C满足性质a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc证明:如图:∵a=b-c∴a^2=(b-c)^2(证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc再拆开,得a^2=b^2+c^2-2*b*c*CosA同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。------------------平面几何证法:在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角.即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。第二篇:正弦定理证明新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较1.课程内容安排上的变化“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。2.教学要求的变化原大纲对“解斜三角形”的教学要求是:(1)掌握正弦定理、余弦定理,并能运用它们解斜
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

正弦定理,余弦的多种证明

文档大小:20KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用