您所在位置: 网站首页 / 相似教案.docx / 文档详情
相似教案.docx 立即下载
2025-08-28
约1.8万字
约32页
0
29KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

相似教案.docx

相似教案.docx

预览

免费试读已结束,剩余 27 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

相似教案

第一篇:相似教案相似1.成比例线段用同一长度单位度量两条线段所得量数的比叫做这两条线段的比.如果线段a和b的比等于线段c和d的比,那么线段a,b,c,d叫做成比例线段,记作ac或a∶b=c∶d,其中a,c叫做比的前项,b,d叫做比的后项,b,c叫做比例内bd若项,a,d叫做比例外项,d叫做a,b,c的(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.6.相似多边形的性质(1)相似多边形的对应角相等;(2)相似多边形对应边的比等于相似比;(3)相似多边形周长的比等于相似比;(4)相似多边形面积的比等于相似比的平方.7.直角三角形中的成比例线段如图13-1,在Rt△ABC中,∠C=90°,CD⊥AB于D,则(1)△ADC∽△ACB∽△CDB(可拆成三对相似三角形);图13-1(2)CD2=AD·DB;(注:用时要证明)(3)AC2=AD·AB,BC2=BD·BA;(注:用时要证明)(4)CD·AB=AC·BC.(注:用时要证明)8.位似(1)如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似图形,这个点叫做位似中心.(2)如果两图形F与F′是位似图形,它们的位似中心是点O,相似比为k,那么①设A与A′是一对对应点,则直线AA′过位似中心O点,并且②设A与A′,B与B′是任意两对对应点,则OAk.OA'ABk若直线AB,A′B′不通过位AB似中心O,则AB∥A′B′.(3)利用位似,可以将一个图形放大或缩小.(4)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k那么位似图形对应点的坐标的比等于k或-k.....9.相似图形的应用二、例题分析例1已知:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值.图13-2分析由已知,∠ABP=∠CBF.欲使以点B,M,C为顶点的三角形与△ABP相似,只要使夹∠ABP及∠CBF的两边对应成比例.解如图13-3.图13-3∵AB⊥BC,PB⊥BF,∴∠ABP=∠CBF.BM14BM1BC,即,BM1=3时,△CBM1∽△ABP.相似比k=1.3BPAB44BM2BCBM2416当即,BM2时,△CBM2∽△PBA.相似比k4ABBP33316∴当BM=3或BM时,以点B,M,C为顶点的三角形与△ABP相似,相似比分3当4别为1和3说明(1)对于探究三角形相似的条件这类问题,可从“角的关系在先、边的关系在后”的思维顺序入手,由于题目条件中只有一组对应角相等,因此就考虑这组对应角的四条线段何时对应成比例,由于点C可以与点A对应(此时点M与点P对应),点C也可以与点P对应(此时点M与点A对应),因此有两种情形.(2)注意当相似比k=1时,两个相似图形全等,因此,全等图形是相似图形的特例.例2已知:如图13-4,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q图13-4(1)请写出图中各对相似三角形(相似比为1的除外);(2)求BP∶PQ∶QR的值.解(1)△BCP∽△BER,△PCQ∽△RDQ,△PCQ∽△PAB,△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,AC∥DE.PBPR,PC1RE2又∵PC∥DR,∴△PCQ∽△RDQ.∵点R是DE中点,∴DR=RE.PQPCPC1,∴QR=2PQ.QRDRRE2又∵BP=PR=PQ+QR=3PQ,∴BP∶PQ∶QR=3∶1∶2.说明(1)如图13-5,“若DE∥BC,则△ADE∽△ABC”.这是用平行线截得三角形构成相似三角形,得到成比例线段常见的基本图形结构.图13-5(2)对于例2,还可进一步思考研究其他问题,例如,在已知条件不变的前提下,若△PCQ的面积为S,你能用含S的代数式分别表示图13-4中其他各图形的面积吗?并说明你的理由.(1)△BPC的面积=______.理由是__________________________________________;(2)△ABP的面积=______.理由是__________________________________________;(3)四边形PCER的面积=______.理由是____________________________________;(4)四边形APRD的面积=______.理由是____________________________________;„„例3如图13-6,等腰
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

相似教案

文档大小:29KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用