等差数列前n项和(教学实录)(五篇模版).docx 立即下载
2025-08-28
约1.3万字
约23页
0
24KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

等差数列前n项和(教学实录)(五篇模版).docx

等差数列前n项和(教学实录)(五篇模版).docx

预览

免费试读已结束,剩余 18 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

等差数列前n项和(教学实录)(五篇模版)

第一篇:等差数列前n项和(教学实录)“自主学习与创新意识培养数学课堂教学模式”研究课一例——“等差数列前n项和”教学实录《普通高中数学课程标准(实验)》中指出:“高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识”.数学公式教学应包含三部分:公式的发现、公式的证明和公式的应用.但当前,由于受应试教育的影响,前两部分往往是“蜻蜓点水”“一带而过”,而第三部分却弄得“脚踏实地”“反复操练”,这显然与“既要重结论,又要重过程”的现代教育理念不相符.其实,在数学公式教学中,所谓“重过程”就是要把当初数学家发现和证明数学公式的经历,通过教师创造性的设计,让学生类似的经历数学公式的发现和证明这一再创造的过程;“重过程”就是让学生在不断地发现问题、提出问题、解决问题的过程中,潜移默化地学会研究数学的方法,提高数学素养,学会数学地思考,发展创新意识.下面叙述的是按照“自主学习与创新意识培养数学课堂教学模式”设计的“等差数列前n项和”研究课的全过程.不妥之处,敬请专家、同行赐教.1设计问题创设情境教师:德国著名数学家高斯被人们称为“数学王子”,因他小时候就非常聪明,他是历史上不多见的以“神童”著称的一位数学家,一则广为流传的故事是高斯10岁的时候,有一天,老师为了让班里的孩子们有事干,便出了一道题,即问题1求1+2+3+„+100=?然而老师刚把题写在黑板上一会,小高斯就求出了它的结果,你知道应如何计算吗?学生1:因为1+100=101,2+99=101,„,50+51=101,于是所求的和是101×100/2=5050.学生2:设s=1+2+3+„+100,①则s=100+99+98+„+1,②①+②得,2S=101×100,所以S=101×1002=5050.(此故事及学生1的算法早已为学生所熟知,这里重提此故事,主要是希望学生由此能提出更一般地问题,发现新的算法(如学生2的算法,已见等差数列前n项和推导方法—倒序相加法的雏形).问题2如图1,是一垛钢管,最下面一层放了102根,最上面一层放了3根,往上每一层都比它下面一层少放一根.这垛钢管共放了多少根钢管?不一会儿,就有学生举手回答.学生3:由等差数列的通项公式易知,这垛钢管共100层,由图1联想到梯形的面积公式的推导方法,用类似的方法去想.如图2所示,可以看出图2每层均有3+102根,又知共100层,故共有(3+102)×100根.从而得这垛(图1中)钢管的根数为(3+102)×100/2=5250.学生4:我和学生3想的差不多,由图1联想到梯形的面积公式:梯形的面积=(上底+下底)×高2,于是,图1中的钢管数为:(3+102)×1002=5250.(众生羡慕不已,教师也为该生的创造性解法所折服,这个解法出乎意料!但该解法缺乏依据,为了保护学生的积极性,教师未否定)提出问题解决问题教师:由问题1及问题2,同学们能想到些什么问题吗?学生5:由问题1想到能否求:从1一直加到n呢?即问题3:求1+2+3+„+n=?,(n∈N+).教师:学生5提出了一个较问题1更为一般的问题,谁能说说所谓求1+2+3+„+n=?,(n∈N+),是什么意思?即题中的“?”应当是一个什么样的表达式?学生6:所谓求1+2+3+„+n=?(n∈N+),就是要想办法消除左式中的“„”号,而将式子中的“?”用n表示出来.(这一环节不容忽视!这样才能弄清题意、弄清解题目标.)教师:很好!谁能求出其结果?学生7:仿问题1中学生2的解法,有因为1+2+3+„+n=?③所以n+(n-1)+(n-2)+„+1=?④③+④得,(1+n)n=2?,所以?=n(n+1)/2.即1+2+3+„+n=n(n+1)/2.(※)教师:上述方法是解决这类问题较方便的方法,大家给这种方法起个恰当的名称好吗?(经讨论大家一致同意叫“倒序相加法”.将起名字的任务交给学生,一是为了激发学生的学习热情,促进学生的概括能力和交流能力的提高;二是能加深对这种方法的认识,并为后续内容的学习做准备.)学生8:问题1和问题2都是求等差数列前n项和问题,最终都是首项与末项的和乘以项数再除以2,因此,我认为等差数列{an}的前n项和Sn的计算公式应为:Sn=(a1+an)n/2.教师:这只是一个猜想,其正确性有待于证明.学生探索证明猜想教师:设等差数列{an}的前n项和为Sn,即Sn=a1+a2+a3+„+an.证明或否定:Sn=n(a1+an)/2.学生9:联想到等差数列{an}通项公式的推导方法,设公差为d,因为S1=1×a1+1×(1-1)/2d,S2=a1+a2=2a1+d=2a1+2(2-1)/2d,S3=a1+a2+a3=3a1+3d=3a1+3(3-1)/2d
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

等差数列前n项和(教学实录)(五篇模版)

文档大小:24KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用