




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
线性代数4课时课程教学大纲 第一篇:线性代数4课时课程教学大纲《线性代数(4课时)》课程教学大纲一、课程说明(一)课程名称:《线性代数》;所属专业:综合性大学理工科各类专业;课程性质:公共必修课;学分:周4学时,共72学时。(二)课程简介、目标与任务:《线性代数》是一门数学基础课,理论严谨,内容较为抽象。通过本课程的学习,要求学生了解线性代数的基本理论和方法,使学生打下坚实的数学基础,掌握牢固的数学知识,提高学生的抽象思维能力、逻辑推理能力、实际应用能力以及解题的技能与技巧,并能用所学知识解决相关问题。从“知识”和“能力”两个方面为学习后续课程奠定必要的基础。通过《线性代数》的教学,使学生了解和掌握行列式、向量、矩阵、线性方程组、线性空间和线性变换、二次型等基本理论和基本知识,并具有熟练的矩阵运算能力和用矩阵方法解决实际问题能力,同时使学生的抽象思维能力受到一定的训练。(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:学习该课程的学生应该具有微积分及代数基本知识。(四)教材与主要参考书:选用教材:《线性代数》,罗彦锋编著,兰州大学出版社,2009年;主要参考书:[1]《线性代数》,徐军民,刘义循,兰州大学出版社,2001。[2]《线性代数》,同济大学数学教研室编,第四版,同济大学出版社,1999。[3]《LinearAlgebraAndItsApplication》,DavidC.Lay,1995。[4]《高等代数》,北京大学数学系几何与代数教研室代数小组,高等教育出版社,1988。[5]《线性代数》,卢刚编著,高教人民出版社,2010年。二、课程内容与学时安排本课程主要教学内容包括行列式、矩阵代数、线性方程组、线性空间与线性变换、矩阵的特征值与特征向量、矩阵的对角化、二次型等。教学内容按照72学时设计,具体安排如下:第一章行列式第一节数域和矩阵第二节二阶与三阶行列式第三节n阶排列第四节n阶行列式的定义第五节行列式的性质第六节行列式按行(列)展开第七节行列式的计算第八节克莱姆法则(一)教学方法与学时分配黑板板书与多媒体教学相结合;14学时;(二)内容及基本要求主要内容:1.数域的概念及例子,矩阵的定义及相关概念。2.二阶、三阶行列式的定义及例子。3.n个正整数的(全)排列及其逆序数的概念,排列的奇偶性,关于一个排列的对换,对换与排列的奇偶性的关系。4.利用排列定义n阶行列式,用定义计算一些简单的但又是典型的n阶行列式(如:上(下)三角形行列式及对角行列式)。5.行列式的基本性质,利用这些性质进行行列式的计算。6.行列式的元素及子式的余子式,代数余子式的概念,以及按行按列(包括多行多列)展开的性质。并会利用这些性质计算行列式。7.利用行列式的基本性质及行列式按行(列)展开计算行列式。一些特殊结构的行列式的计算技巧和方法。8.讨论一类特殊的线性方程组(即方程的个数与未知量的个数相等且系数行列式非0的方程组)的解法。对于此类方程组,可利用行列式直接求解,此即克莱姆法则。【重点掌握】:行列式计算及克莱姆法则;【掌握】:行列式性质,特殊行列式的计算方法;【了解】:逆序数的相应性质等,加边法求解行列式;【难点】:拉普拉斯定理,余子式等。第二章矩阵代数第一节n维向量第二节向量的线性相关与线性无关、向量组的秩第三节矩阵的运算第四节矩阵的初等变换及其等价标准形第五节矩阵的秩第六节可逆矩阵第七节分块矩阵及其应用第八节初等变换与初等矩阵(一)教学方法与学时分配黑板板书与多媒体教学相结合;16学时;(二)内容及基本要求主要内容:1.n维向量的定义及其线性运算和性质。2.线性组合,线性表示,向量组的线性相关与线性无关的概念,以及与之相关的若干性质;向量组的极大无关组Fn中的向量组的极大无关组的求法,向量组的秩。3.矩阵的基本运算及与运算相关的重要性质,其基本运算包括矩阵的加法、数与矩阵的乘法(即矩阵的数乘)、矩阵的乘法、矩阵的转置。4.矩阵的初等变换的概念,讨论矩阵在初等变换下可化为怎样的“简单”形式,这些简单形式包括阶梯形和标准形等,求一个向量组的极大线性无关组的方法。5.矩阵的秩的定义及其若干充要条件,矩阵的乘积的秩与因子的秩的关系,利用初等变换求矩阵的秩。6.可逆矩阵的定义及与逆矩阵相关的重要矩阵运算性质,利用这些性质判断一个方阵是否可逆。矩阵的伴随矩阵的定义,利用伴随矩阵求解一个可逆矩阵的逆矩阵。7.矩阵分块的概念,矩阵分块的性质(重点是关于矩阵乘法的性质),并能够利用其性质简化矩阵的运算。8.初等矩阵的概念,以及初等变换与初等矩阵二者之间的关系;矩阵可逆的等价条件;利用矩阵的初等变换判断一个方阵是否可逆,及在可逆时求其逆矩阵。【重点掌握】:矩阵逆的求解方法;秩的概念和求解;线性相关和无关的概念;【掌握】:初等变换与初等矩阵

雨星****萌娃
实名认证
内容提供者


最近下载