




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
考研数学证明题题目11 第一篇:考研数学证明题题目11今天还是讨论关于不等式的问题。这次的这个不等式大家看见了一定不会陌生,因为思路很容易就拿出来了。就是转化成求一个函数的极值问题。然后解法一就诞生了。上面的方法估计是绝大多数人都会采用的方法,算是一种通法了。也是必须得掌握的重要思想方法之一。然而,是不是这个题目除了这种方法就没有其他的办法来做了呢?答案是否定的。注意到需要证明的不等式可以先化成e^x>x^2-2ax+1,而左边的式子要和幂函数联系起来,很容易想到的就是马克劳林展开。于是可以尝试着看看是否能够利用这个来做。首先可以试着将e^x展开到二阶的,然后看看是否能够证明需要的不等式。发现不行,然后再继续多展开一阶。于是,解法二横空出世。说句实话,就这道题而言,这种方法确实挺复杂的,而且还没有求导的方法精确。不过,这种思想方法对于一些题目来说,却可能是重要的突破口!下面看看一道习题吧。由于这道题目比较难,所以直接给出解答。这个题目可以说相当于反用幂级数的展开,然后利用马克老林余项的估值最后证明出结论。这个看似很一般的题目,中间却蕴含着无限的思想,需要大家细细品味!第二篇:考研数学证明题题目10今天来看看不等式的题目。不等式对于我们来说应该是再熟悉不过的了,初中的时候学过一次二次不等式,高中更是系统学习了不等式,在考研试题里面,也不乏不等式的题目。不等式的题目相对比较灵活,综合性很强,是考察数学能力的一个很好的方式。虽然很活,不过对于考研来说,这些题目也都有一定的方法和思想,是大家可以掌握的。这里就大家比较容易忽略的某些方法说说自己的理解。看到题目应该有一种很相似的感觉。因为不等式的中间部分貌似就是拉格朗日中值定理。于是,有一种冲动,试试这种方法是否可行。尝试了一下,发现左边已经证明出来了。这时应该比较欣慰,因为题目做出了一半。于是心想着,右边应该同理也可以证明吧。不管三七二十一,先试一下。试完以后,悲剧了!居然无法证明出来。怎么办?只有另找一种出路。很多参考书上给的解答都是构造一个辅助函数,这个辅助函数就是将b换成x,成为一个关于x的函数,然后利用导数工具研究这个函数的性质从而得出最终的证明结果。这种方法很典型,需要大家比较熟练运用。不过,对于这道题来说,这种方法有点复杂了,因为构造的函数很长一串儿,看起来也不大舒服。于是可以尝试下其他的方法。对于这道题而言,a,b都是成对的出现的,而且a,b出现的次数都一样,亦即齐次式。所以,我们总可以通过一定变形,使得这个表达式成为一个关于a/b或者b/a的式子。然后产生了下面的解法这个解法对于有经验的人来说是很自然的,因为证明不等式有三化,齐次化,线性化和局部化,这里体现的就是齐次化思想。这道题目本身不难,但是题目中蕴含的思想却不少。1拉格朗日中值定理也可以用来证明不等式,不过放缩的范围比较大,不够精确!2对于齐次式,我们可以将其转变成单变元问题(多变元化单变元),然后研究一个一元函数的性质就能够知道相应的一些关系。3要充分利用够题目的条件!比如此题中b>a,则b/a=t>1!如果不用的话就会出问题的!然后看看练习吧第三篇:2013考研证明题系列-题目5看见这道证明题,首先第一步是对比一下两边的差异。仔细观察积分限,被积函数,发现只有抽象函数f里面的表达式变了,而且变的很有规律!可以说,相当于用一个变量去替换了x^2,所以此时此刻,我们很容易想到积分换元,于是可是,这个时候麻烦又出现了。原因有两点(1)积分下限没改变但是上限变了(2)多了个系数2这个时候,我们得想办法处理,如何才能将这个东西向已知结论靠拢呢?考虑到积分区间的可加性,我们不妨将这个积分的区间分开成两段,其分界点为a。也许有人会问,你为什么想到要在a点取分界点,我个人认为原因有两点。原因1:我们要证明的式子最后的积分上限就是a,所以我主动构造出来一个,后面那个看能不能用什么方法处理使得也变成结论形式原因注意到我给的这个式子,a对于抽象函数而言,相当于是一个比例中项,也就是平衡位置。所以,选取这一点,对后面的问题处理也有一定帮助!(不过这个理由有点抽象,需要一定的数学基础才能比较好的认知)不过理由1是很明确的,是证明题的要素之一:朝着目标转化!接下来就是对这个表达式的处理了还是同样的思想,我们应该朝着目标转化,也就是说,积分限需要变成1,a!那么我们需要找到一个适当的变化,使得能够满足条件。其次,在这种变换下,我们不允许f内的自变量形式发生任何变化,一旦变化,由于是抽象函数,所以根本无法处理。在这两种条件的限制下,我们考虑下述变换。这种变换的优势体现在两点:一是f内部函数形式没变,二是积分限出现了a,1,也就是目标!因此,我们有理由相信,这种方法是可以行得通。PS:其实,在找出这种方法为正确的变换之前,我也尝试了一些其他

康平****ng
实名认证
内容提供者


最近下载