您所在位置: 网站首页 / 角平分线定理的多种证明方法.docx / 文档详情
角平分线定理的多种证明方法.docx 立即下载
2025-08-28
约1.2万字
约21页
0
22KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

角平分线定理的多种证明方法.docx

角平分线定理的多种证明方法.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

角平分线定理的多种证明方法

第一篇:角平分线定理的多种证明方法三角形内角平分线定理的多种证明方法已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC证明:方法一:(面积法)三角形ABM面积S=(1/2)*AB*AM*sin∠BAM,三角形ACM面积S=(1/2)*AC*AM*sin∠CAM,所以三角形ABM面积S:三角形ACM面积S=AB:AC又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比,即三角形ABM面积S:三角形ACM面积S=BM:CM所以AB/AC=MB/MC方法二(相似形)过C作CN平行于AB交AM的延长线于N三角形ABM相似三角形NCM,AB/NC=BM/CM,又可证明∠CAN=∠ANC所以AC=CN,所以AB/AC=MB/MC方法三(相似形)过M作MN平行于AB交AC于N三角形ABC相似三角形NMC,AB/AC=MN/NC,AN/NC=BM/MC又可证明∠CAM=∠AMN所以AN=MN,所以AB/AC=AN/NC所以AB/AC=MB/MC方法四(正弦定理)作三角形的外接圆,AM交圆于D,由正弦定理,得,AB/sin∠BMA=BM/sin∠BAM,AC/sin∠CMA=CM/sin∠CAM又∠BAM=∠CAM,∠BMA+∠AMC=180sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC,所以AB/AC=MB/MC阅读下面材料,按要求完成后面作业。三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。已知:△ABC中,AD是角平分线(如图1),求证:=。分析:要证=,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似,现在B、D、C在一条直线,△ABD与△ADC不相似,需要考虑用别的方法换比。在比例式=中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明(1)完成证明过程:证明:=,就可转化证=。(2)上述证明过程中,用到了哪些定理(写对两个即可)答:用了:①____________;②_____________。(3)在上述分析和你的证明过程中,主要用到了下列三种数学思想的哪一种:①数形结合思想②转化思想③分类讨论思想答:____________。(4)用三角形内角平分线定理解答问题:如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BD=7cm,求BC之长。(1)证明:过点C作CE//AD交BA的延长线于点E,则∠E=∠BAD=∠DAC=∠ECA,所以AE=AC,由CE//AD,可得=,∴=。(2)两直线平行,同位角相等;等腰三角形的判定;三角形相似的判定的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(3)②;(4)“略”第二篇:角平分线的性质定理教案角平分线的性质定理教案慧光中学:王晓艳教学目标:(1)掌握角平分线的性质定理;(2)能够运用性质定理证明两条线段相等;教学重点:角平分线的性质定理及它的应用。教学难点:角平分线定理的应用;教学方法:引导学生发现、探索、研究问题,归纳结论的方法教学过程:一,新课引入:1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点?操作:(1)画一个角的平分线;(2)在这条平分线上任取一点P,画出P点到角两边的距离。(3)说出这两段距离的关系并思考如何证明。2.定理的获得:A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明,得出此命题是真命题,从而得到定理,并写出相应的符号语言。B、分析此定理的作用:证明两条线段相等;应用定理所具备的前提条件是:有角的平分线,有垂直距离。3.定理的应用二.例题讲解:例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。求证:PE=PF(此题已知中有垂直,缺乏角平分线这个条件)FBPACE例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点E、F,圆心O在∠MAN的角平分线AQ上。求证:BC=EF(此题已知中有角平分线,缺乏垂直这个条件)MCQBAEONF三:课堂小结:①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂直距离;②若图中有角平分线,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1=∠2;BD=CD,AD=AD),但无法证明△ABD≌△ACD,所以必须添加一些线帮助解题。A1EBDFC方一、延长AD到AE,使DE=AD,再连接CD。(此方法前面
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

角平分线定理的多种证明方法

文档大小:22KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用