您所在位置: 网站首页 / 证明向量共面.docx / 文档详情
证明向量共面.docx 立即下载
2025-08-28
约9.7千字
约17页
0
19KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

证明向量共面.docx

证明向量共面.docx

预览

免费试读已结束,剩余 12 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

证明向量共面

第一篇:证明向量共面证明向量共面已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?写详细点怎么做谢谢了~明白后加分!!我假定你的O-A表示向量OA。由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)你给的右端向量都反向,所以2x+3y+4z=-1。2充分不必要条件。如果有三点共线,则第四点一定与这三点共面,因为线和直线外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。而有四点共面,不一定就其中三点共线,比如四边形的四个顶点共面,但这四个顶点中没有三个是共线的。“三点共线”可以推出“四点共面”,但“四点共面”不能推出“三点共线”。因此是充分不必要条件任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积(AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。3已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?写详细点怎么做谢谢了我假定你的O-A表示向量OA。由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)你给的右端向量都反向,所以2x+3y+4z=-1。4Xa-Yb+Yb-Zc+Zc-Xa=0∴Xa-Yb=-(Yb-Zc)-(Zc-Xa)由共面判定定理知它们共面。简单的说一个向量能够用另外两个向量表示,它们就共面。详细的看高中课本41.若向量e1、e2、e3共面,(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是λe1+μe2-e3=0.即存在三个不全为零的实数λ,μ,υ=-1,使得λe1+μe2+υe3=0”。(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,就有e1=(-μ/λ)e2+(-υ/λ)e3,于是e1,e2,e3共面。第二篇:向量证明四点共面向量证明四点共面由n+m+t=1,得t=1-n-m,代入op=nox+moy+toz,得OP=nOX+mOY+(1-n-m)OZ,整理,得OP-OZ=n(OX-OZ)+m(OY-OZ)即ZP=nZX+mZY即P、X、Y、Z四点共面。以上是充要条件。2如果通过四点外的一点(空间中)与四点之间的关系来判断折四点共面A,B,C,D,4个点,与另外一点O,若OA=xOB+yOC+zOD,x+y+z=1,四点就共面3设一向量的坐标为(x,y,z)。另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向量平行如果ax+by+cz=0,则两向量垂直。答案补充三点一定共面,证第四点在该平面内用向量,另取一点O如向量OA=ax向量OB+bx向量OC+cx向量OD,且a+b+c=1则有四点共面答案补充方法已经很详细了呀。4线平行线:两条线的方向向量矢量积为0,且两条线没交点面平行线:是线平行面吧,线的方向向量和平面法向量垂直,即线的方向向量和平面法向量数量积为0,且线不在平面内三点共面:三点肯定是共面的,我猜你说的是三点共线吧,比如ABC三点,证明共线,证明AB与BC的方向向量矢量积为0四点共面:比如ABCD三点证明AB,AC,AD三者满足先求AB,AC的矢量积a,再a和AD数量积为03怎样证明空间任意一点O和不共线的三点A,B,C,向量OP=x向量OA+y向量OB+z向量OC且x+y+z=1,则P,A,B,C四点共面简明地证明,网上的不具体,不要复制!证明:由x+y+z=1→x向量OC+y向量OC+z向量OC=向量OC,且:x向量OA+y向量OB+z向量OC=向量OP将上边两式相减得:向量OP-向量OC=x(向量OA-向量OC)+y(向量OB-向量O
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

证明向量共面

文档大小:19KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用