高中数学探究性教学案例及反思.docx 立即下载
2025-08-28
约2.2万字
约38页
0
33KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学探究性教学案例及反思.docx

高中数学探究性教学案例及反思.docx

预览

免费试读已结束,剩余 33 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学探究性教学案例及反思

第一篇:高中数学探究性教学案例及反思——谈“简单的线性规划问题”教学设计设计人:郭勇探究式教学是新课程改革课堂教学的主要方式之一,我们通过“简单的线性规划问题”教学案例,对探究活动中的问题进行讨论。1、问题的提出1.新课程必修5课本的“阅读与思考”——错在哪里?若实数x,y满足1xy3(i)求4x+2y的取值范围.1xy1错解:由①、②同向相加可求得:0≤2x≤4即0≤4x≤8③由②得—1≤y—x≤1将上式与①同向相加得0≤2y≤4④③十④得0≤4x十2y≤12以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.(2)[辨析]通过讨论,上述解法中,确定的0≤4x≤8及0≤2y≤4是对的,但用x的最大(小)值及y的最大(小)值来确定4x十2y的最大(小)值却是不合理的.x取得最大(小)值时,y并不能同时取得最大(小)值。由于忽略了x和y的相互制约关系,故这种解法不正确.(其中有小部分学生仍处于迷惑之中。)(3)[激励]此例有没有更好的解法?怎样求解?(4)[提问1](2)中的描述能否从形(即从几何)方面直观得到解释?请同学们想一想:不等式组(i)的几何意义是什么?(许多同学心头一亮,跃跃欲试。)教师趁机把动手的机会让给学生,要求他们打开几何画板进行探究。(教师巡视,指点,并注意收集信息的返馈。)最后利用展示台交流,达成共识:不等式组(i)表示的平面区域是一个以A(1,0),B(2,1),C(1,2),D(0,1)为顶点的正方形区域,而由不等式组(i)得到0≤x≤2,0≤y≤2表示的区域是一个以O(0,0),E(2,0),F(2,2),G(0,2)为顶点的正方形区域,显然由原不等式组(i)导出x,y范围,使得区域变大了。确定的0≤4x≤8及0≤2y≤4独立表示时是对的,但合起来求其交集时所表示的可行域的范围明显变大了,在错误的可行区域求4x+2y的取值范围,难怪做错了。(学生沉浸在做数学的快乐中。)此时趁热打铁,继续探究:(5)[提问2]既然我们已经完成了把不等式组(i)从数向形的转化,那么这个问题能不能从数形结合上得到完整的解决呢?也就是说:问题转化为:求4x+2y在约束条件不等式组(i)下的值域。(学生开始寻找4x+2y的几何意义)有些同学做了这样的尝试:f(x,y)=4x+2y关于x和y的二元一次函数。函数在直角坐标系里又表示什么呢?学过的有关二元一次的只有二元一次方程表示直线了。终于,经过学生的一番思考探究之后,找到了条件与结论之间的内在联系,把问题提问2转化为:求Z=4x+2y在约束条件不等式组(i)下的最大值和最小值。而y2xZ,此时Z的几何意义是直线Z=4x+2y的纵截距的一半。故截距越大,Z的值越大。(有些思维比较活2的,省去f(x,y)=4x+2y这一步的思考,有些基础比较差的虽想到了f(x,y)=4x+2y这一步,就无法更进一步了。此时教师巡堂,及时发现问题,加强个别指导。)探究到此,后面的解答过程学生通过平移直线不难得到。现在让学生们相互交流、补充,总结出此类问题的一般解法即:图解法:画---移---求----答2、教学过程2.1合作探究归纳出线性规划的有关概念:经过上面的探究过程,再来合作探究归纳出本节课的概念,是相当自然的:①线性约束条件;②线性目标函数;③线性规划问题;④可行解、可行域和最优解。2.2知识的应用课堂练习:课本练习1先引导设问:①指出线性约束条件和线性目标函数;②用几何画板画出图形,要求学生指出可行域;③说出三个可行解;④求出最优解。例一、某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:(2)画出不等式组所表示的平面区域:(3)若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?数学问题:确定未知变量(决策变量)。教师巡视,引导:把实际问题文字语言转化符号语言(建立线性规划模型)运用图解法求解。(利用实物投影显示列不等式组中的各种错误,由学生找出,并指正。)如:学生易忽视x≥0和y≥0的关系。解答:(实物投影显示参考答案)变式探究:课本的探究活动(1)在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,应当如何安排生产才能获得最大利润?在换几组数据试试。(2)由上述过程,你能得出最优解与可行域之间的关系吗?教师引导学生利用几何画板来进行自我探究,如右图。学生在换了好几组a、b的值之后,都得到了在多边形(可行域)的顶点A或B处取到。于是有些学
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高中数学探究性教学案例及反思

文档大小:33KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用