如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
人教版九年级数学上册第二十四章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图物体由两个圆锥组成其主视图中.若上面圆锥的侧面积为1则下面圆锥的侧面积为()A.2B.C.D.2、如图⊙O的半径为5AB为弦点C为的中点若∠ABC=30°则弦AB的长为()A.B.5C.D.53、已知圆内接正三角形的面积为则该圆的内接正六边形的边心距是()A.B.C.D.4、如图在等腰Rt△ABC中AC=BC=点P在以斜边AB为直径的半圆上M为PC的中点.当点P沿半圆从点A运动至点B时点M运动的路径长是()A.πB.πC.πD.25、已知扇形的半径为6圆心角为.则它的面积是()A.B.C.D.6、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD7、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°8、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.9、如图AC是⊙O的直径弦AB//CD若∠BAC=32°则∠AOD等于()A.64°B.48°C.32°D.76°10、如图、分别切于点、点为优弧上一点若则的度数为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图AB是⊙O的弦点C在过点B的切线上且OC⊥OAOC交AB于点P已知∠OAB=22°则∠OCB=__________.2、已知直线m与半径为5cm的⊙O相切于点PAB是⊙O的一条弦且若AB=6cm则直线m与弦AB之间的距离为_____.3、如图四边形ABCD内接于⊙O∠A=125°则∠C的度数为______.4、如图是的内接正三角形点是圆心点分别在边上若则的度数是____度.5、如图正方形ABCD边长为4点P和点Q在正方形的边上运动且PQ=4若点P从点B出发沿B→C→D→A的路线向点A运动到点A停止运动;点Q从点A出发沿A→B→C→D的路线向点D运动到达点D停止运动.它们同时出发且运动速度相同则在运动过程中PQ的中点O所经过的路径长为_____.三、解答题(5小题每小题10分共计50分)1、如图已知等边△ABC内接于☉OBD为内接正十二边形的一边CD=5cm求☉O的半径R.2、在平面直角坐标系中平行四边形的顶点AD的坐标分别是其中.(1)若点B在x轴的上方①求的长;②且.证明:四边形是菱形;(2)抛物线经过点BC.对于任意的当am的值变化时抛物线会不同记其中任意两条抛物线的顶点为(与不重合)则命题“对所有的ab当时一定不存在的情形.”是否正确?请说明理由.3、问题提出(1)如图①在△ABC中AB=AC=10BC=12点O是△ABC的外接圆的圆心则OB的长为问题探究(2)如图②已知矩形ABCDAB=4AD=6点E为AD的中点以BC为直径作半圆O点P为半圆O上一动点求E、P之间的最大距离;问题解决(3)某地有一块如图③所示的果园果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的果园主人现要从入口D到上的一点P修建一条笔直的小路DP.已知AD∥BC∠ADB=45°BD=120米BC=160米过弦BC的中点E作EF⊥BC交于点F又测得EF=40米.修建小路平均每米需要40元(小路宽度不计)不考虑其他因素请你根据以上信息帮助果园主人计算修建这条小路最多要花费多少元?4、如图为的直径C为上一点弦的延长线与过点C的切线互相垂直垂足为D连接.(1)求的度数;(2)若求的长.5、如图以Rt△ABC的AC边为直径作⊙O交斜边AB于点E连接EO并延长交BC的延长线于点D点F为BC的中点连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2∠EAC=60°求AD的长.-参考答案-一、单选题1、D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°BD=AB再证明△CBD为等边三角形得到BC=BD=AB利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB从而得到
星菱****23
实名认证
内容提供者
最近下载