




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
2022关于勾股定理说课稿范文汇编9篇关于勾股定理说课稿范文汇编9篇作为一位杰出的教职工,编写说课稿是必不可少的,借助说课稿可以让教学工作更科学化。写说课稿需要注意哪些格式呢?以下是我整理的勾股定理说课稿9篇,希望对大家有所帮助。勾股定理说课稿篇1尊敬的各位领导、各位老师,大家好:我叫李朝红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。一、教材分析1、教材的地位和作用:在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。2、教学目标教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神.3、重点难点本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点重点:理解并掌握勾股定理的逆定理,并会应用。难点:理解勾股定理的逆定理的推导。二、教法学法分析八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。三、教学过程分析:(一)创设情景,引入新课1、展示图片:古埃及人制作直角的方法2、让学生试一试用一根绳子确定直角设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。(二)动手检测,提出假设在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm(2)5cm、12cm、13cm(3)3.5cm、12cm、12.5cm上面三组线段为边画出三角形,猜测验证出其形状。再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的推测能力,严密的逻辑思维能力和灵活的动手实践能力。(三)探索归纳,证明假设:勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先1、让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,2、然后在黑板上画一个三边长为a、b、c,且满足a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足a2+b2=c2的△ABC与以a、b为直角边的直角三角形的关系。设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——

梅雪****67
实名认证
内容提供者


最近下载