




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
八年级数学的知识点总结2022一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。3、勾股数满足的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。二、证明1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。2、三角形内角和定理:三角形三个内角的和等于180度。(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。(2)三角形的外角与它相邻的内角是互为补角。3、三角形的外角与它不相邻的内角关系(1)三角形的一个外角等于和它不相邻的两个内角的和。(2)三角形的一个外角大于任何一个和它不相邻的内角。4、证明一个命题是真命题的基本步骤(1)根据题意,画出图形。(2)根据条件、结论,结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。三、数据的分析1、平均数①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。2、中位数与众数①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最多的那个数据叫做这组数据的众数。③平均数、中位数和众数都是描述数据集中趋势的统计量。④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。⑥各个数据重复次数大致相等时,众数往往没有特别意义。3、从统计图分析数据的集中趋势4、数据的离散程度①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。②数学上,数据的离散程度还可以用方差或标准差刻画。③方差是各个数据与平均数差的平方的平均数。④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。八年级上册数学知识点沪科版(一)运用公式法我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。2.因式分解,必须进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。③有一项是这两个数的积的两倍。(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式

明钰****甜甜
实名认证
内容提供者


最近下载