如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
探索型问题(一):引言:上课时学习了探索型问题(一),即条件探索与结论探索,解决这类问题常用的方法是:(1)特殊值代入法,(2)反演推理法,(3)类讨论法,(4)类比猜想法。本课时学习存在型探索与规律型探索(三)例题剖析∴(2)若⊙A的位置大小不变,⊙B的圆心在x轴正半轴上,并使⊙B与⊙A始终外切过M作⊙B的切线,切点为C,在此变化过程中探究:1四边形OMCB是什么四边形?2经过M、N、B三点的抛物线内是否存在以BN为腰的等腰三角形?若存在,表示出来,若不存在,说明理由。例3已知二次函数的图象如图,(1)求二次函数的解析式;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为Q,当点N在线段BM上运动时(不与点B、点M重合)设NQ的长为t,四边形NQAC的面积为S,求S与t间的函数关系式及自变量的取值范围;(3)在对称轴右侧的抛物线上是否存在点P使△PAC为Rt△?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由。-1例3已知二次函数的图象如图,(1)求二次函数的解析式;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为Q,当点N在线段BM上运动时(不与点B、点M重合)设NQ的长为t,四边形NQAC的面积为S,求S与t间的函数关系式及自变量的取值范围;(3)在对称轴右侧的抛物线上是否存在点P使△PAC为Rt△?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由。-1(四)小结再见
Ke****67
实名认证
内容提供者
最近下载