您所在位置: 网站首页 / 总体方差(标准差)的估计.doc / 文档详情
总体方差(标准差)的估计.doc 立即下载
2024-03-20
约1.1千字
约2页
0
45KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

总体方差(标准差)的估计.doc

总体方差(标准差)的估计.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

总体方差(标准差)的估计教学要求:理解方差和标准差的意义,会求样本方差和标准差。教学过程:看一个问题:甲乙两个射击运动员在选拔赛中各射击20次,成绩如下:甲786865910745656787999乙95787686779658696877问:派谁参加比赛合适?一、方差和标准差计算公式:样本方差:s2=〔(x1—)2+(x2—)2+…+(xn—)2〕样本标准差:s=方差和标准差的意义:描述一个样本和总体的波动大小的特征数。标准差大说明波动大。一般的计算器都有这个键。例一、要从甲乙两名跳远运动员中选拔一名去参加运动会,选拔的标准是:先看他们的平均成绩,如果两人的平均成绩相差无几,就要再看他们成绩的稳定程度。为此对两人进行了15次比赛,得到如下数据:(单位:cm):甲755752757744743729721731778768761773764736741乙729767744750745753745752769743760755748752747如何通过对上述数据的处理,来作出选人的决定呢?甲≈乙≈s甲≈s乙≈说明:总体平均数描述一总体的平均水平,方差和标准差描述数据的波动情况或者叫稳定程度。二、练习:1、甲658496乙876582根据以上数据,说明哪个波动小?2、从甲乙两个总体中各抽取了一个样本:甲900920900850910920乙890960950850860890根据上述样本估计,哪个总体的波动较小?3、甲乙两人在相同条件下个射击20次,命中的环数如下:甲7868659107456678791096乙95787686779658696877问谁射击的情况比较稳定?三、作业:1、为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12131415101613111511乙111617141319681016哪种小麦长得比较整齐?2、某农场种植的甲乙两种水稻,在连续6年中各年的平均产量如下:品种第1年第2年第3年第4年第5年第6年甲6.756.96.756.386.836.9乙6.687.27.136.386.456.68哪种水稻的产量比较稳定?
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

总体方差(标准差)的估计

文档大小:45KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用