如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
2022年高一年级数学暑假作业参考答案一、选择题1.已知f(x)=x-1x+1,则f(2)=()A.1B.12C.13D.14【解析】f(2)=2-12+1=13.X【答案】C2.下列各组函数中,表示同一个函数的是()A.y=x-1和y=x2-1x+1B.y=x0和y=1C.y=x2和y=(x+1)2D.f(x)=?x?2x和g(x)=x?x?2【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};B中函数y=x0定义域{x|x≠0},而y=1定义域为R;C中两函数的解析式不同;D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.【答案】D3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()图2-2-1【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.【答案】B4.函数f(x)=x-1x-2的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2]D.[1,+∞)【解析】要使函数有意义,需x-1≥0,x-2≠0,解得x≥1且x≠2,所以函数的定义域是{x|x≥1且x≠2}.【答案】A5.函数f(x)=1x2+1(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]【解析】由于x∈R,所以x2+1≥1,0即0【答案】B二、填空题6.集合{x|-1≤x【解析】结合区间的定义知,用区间表示为[-1,0)∪(1,2].【答案】[-1,0)∪(1,2]7.函数y=31-x-1的定义域为________.【解析】要使函数有意义,自变量x须满足x-1≥01-x-1≠0解得:x≥1且x≠2.∴函数的定义域为[1,2)∪(2,+∞).【答案】[1,2)∪(2,+∞)8.设函数f(x)=41-x,若f(a)=2,则实数a=________.【解析】由f(a)=2,得41-a=2,解得a=-1.【答案】-1三、解答题9.已知函数f(x)=x+1x,求:(1)函数f(x)的定义域;(2)f(4)的值.【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞).(2)f(4)=4+14=2+14=94.10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y=34x+83x-2有意义,则必须3x-2>0,即x>23,故所求函数的定义域为{x|x>23}.11.已知f(x)=x21+x2,x∈R,(1)计算f(a)+f(1a)的值;(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,所以f(a)+f(1a)=1.(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=?12?21+?12?2=15,f(3)=321+32=910,f(13)=?13?21+?13?2=110,f(4)=421+42=1617,f(14)=?14?21+?14?2=117,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.高中理科学霸各科学习技巧【语文】结合大纲,注重积累明确教学内容和要求《教学大纲》将高中语文的“教学内容和要求”分为阅读、写作、口语交际和综合性学习等部分。这些能力目标是在高中三年的学习里完成的,而高二正是在高一学习基础上的继续和延伸,是能力的进一步发展。因此需要我们进一步加强阅读,扩大阅读面,在阅读重领悟,提升自己的阅读能力。这些课文要精研细读具体到第三册的学习内容和方法,我个人的看法是,“文言文阅读”部分,选编的两个单元八篇课文是要精研细读的,这是形成阅读能力的前提,文章设计的文言知识,如通假字、古今异义、一词多义。词类活用。特殊句式和固定句式要在老师的指导下进行归类和积累。文言语感同样是要反复诵读才能形成的,因而要熟读课文乃至背诵,这样才有望形成一种能力,并迁移到课外阅读,达到“触类旁通”的效果。《读本》选编的文章正是教材的辅助,是检验自身阅读能力的很好的范本
是你****平呀
实名认证
内容提供者
最近下载